UDC 622.691.4.052

THE PROCESS OF LIQUID ACCUMULATIONS REMOVING FROM NATURAL GAS PIPELINE

УДАЛЕНИЕ СКОПЛЕНИЙ ЖИДКОСТИ ИЗ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ

A.A. Korshak, M.E. Usoltsev, V.V. Pshenin

Ltd. “SPC “Knowledge”, Ufa, Ltd. «Transneft-Baltika», St.- Peterburg, ZAO CTPI “Gasproject”, St.- Peterburg, the Russian Federation

Коршак А.А., Усольцев М.Е., Пшенин В.В.

ООО «НПЦ «Знание», г. Уфа, Российская Федерация
ООО «Транснефть – Балтика», ЗАО «КТПИ «Газпроект», г. Санкт-Петербург, Российская Федерация

e-mail: korshak-spb@mail.ru

Abstract. From off-grade preparation of gas to the transport, incomplete moving away of water after hydrotests and other reasons in the cavity of main gas pipelines the accumulations of liquid appear periodically. For their moving away are presently used: a 1) washing with admission of cleansing piston or piston-delimiter; 2) blowing out with admission cleansing and at a necessity a piston-delimiter; 3) blowing out without admission of cleansing pistons. The first two methods are effective enough, but considerable part of main gas pipelines is not equipped by the chambers of reception and starting of cleansing devices, necessary for admission of pistons.

Blowing out of internal cavity of gas pipelines is used only for pipelines a diameter not exceeding a 219 mm, and long a less than 5 km in addition, the considerable losses of gas take place in this case. The method of bearing-out of accumulations of liquid is most attractive from main gas pipelines by the stream
of the pumped over gas, as his losses are absent in this case. To the article data are driven about studies of this technology undertaken a by authors.

Foremost on the basis of method of dimensional analysis the type of criterion dependence was got for the calculation of relative expense of the liquid taken away by the pumped over gas. Further description of laboratory experiments follows: charts of setting, methodology of tests, got results.

Understanding that in laboratory terms it is practically impossible to get experimental formulas just and for main gas pipelines, in future authors resorted to the design of processes of bearing-out of accumulations of liquid with the use of the program ComsolMultiphysics. On the first stage the mathematical model of the experimental setting was created, a design was conducted at the physical parameters of corresponding to the model laboratory experiments.

Since the results of design and model laboratory experiment coincided practically, was drawn conclusion about adequacy of the worked out model of process of bearing-out of accumulations of liquid from pipelines and the design of their moving away was executed from main gas pipelines. As a result of processing of the obtained data a formula is got for the calculation of relative expense of liquid by the stream of the pumped over gas, suitable for practice of exploitation of highways.

**Annotation.** Из-за некачественной подготовки газа к транспорту, неполного удаления воды после гидроиспытаний и других причин в полости магистральных газопроводов периодически образуются скопления жидкости. Для их удаления в настоящее время применяются: 1) промывка с пропуском очистного поршня или поршня-разделителя; 2) продувка с пропуском очистного и при необходимости поршня-разделителя; 3) продувка без пропуска очистных поршней. Первые два метода достаточно эффективны, но значительная часть магистральных газопроводов не оборудована камерами приема и пуска очистных устройств, необходимыми для пропуска поршней. Продувка внутренней полости газопроводов применяется только для трубопроводов диаметром,
не превышающим 219 мм, и длиной менее 5 км. Кроме того, в этом случае имеют место значительные потери газа. Наиболее привлекателен метод выноса скоплений жидкости из магистральных газопроводов потоком перекачиваемого газа, т.к. в этом случае его потери отсутствуют. В статье приводятся данные о проведенных авторами исследованиях данной технологии.

Прежде всего, на основе метода анализа размерностей был получен вид критериальной зависимости для расчета относительного расхода выносимой перекачиваемым газом жидкости. Далее следует описание лабораторных экспериментов: схемы установки, методики испытаний, полученных результатов.

Понимая, что в лабораторных условиях практически невозможно получить экспериментальных формул, справедливых и для магистральных газопроводов, в дальнейшем авторы прибегли к моделированию процессов выноса скоплений жидкости с использованием программы ComsolMultiphysics. На первом этапе была создана математическая модель экспериментальной установки, моделирование проводилось при физических параметрах соответствующих натурным лабораторным экспериментам.

После того, как результаты моделирования и натурного лабораторного эксперимента практически совпали, был сделан вывод об адекватности разработанной модели процесса выноса скоплений жидкости из трубопроводов и было выполнено моделирование их удаления из магистральных газопроводов. В результате обработки полученных данных получена формула для вычисления относительного расхода жидкости потоком перекачиваемого газа, пригодная для практики эксплуатации магистралей.

**Key words:** gas pipelines, liquid accumulation, lower area, removal accumulations, experimental installation, design of bearing-out of liquid.
Ключевые слова: Газопровод, скопления жидкости, пониженные участки, вынос скоплений, экспериментальная установка, моделирование выноса жидкости.

Rising of task. The analysis of statistical data shows in quality of supplied with on an export gas, that the cases of worsening of his quality take place on the temperature of dew point, and also on maintenance moisture and to hydrocarbons of relatively contract requirements. The indexes of quality of drainage of gas pipelines after building and overhauls are not set norms, and in the projects of building of objects not grounded.

For diverse reasons cleaning and drainage of gas pipelines can executed with violation of technology, that causes worsening of quality of the gas supplied to the consumers, including on an export, as it took place in 2004 at the serve of gas on a gas pipeline "Yamal-Europe" through hybrid-type device.

The study of similar episodes showed that reasons of increase of dew point can be:

1) off-grade preparation of gas on trades;

2) incomplete moving away of water after watertesting and nonfulfillment of works on drainage on most, GRS of deposits and PHG what be going on by reason of insufficient amount of mobile options of drainage objects of capital building reconstruction and major repairs of main, intercommercial gas pipelines, technological tying around of KS;

3) hit of liquid in the cavity of pipelines at accidents and building and installation works;

4) presence of accumulating liquid in the cavity of main and intercommercial gas pipelines, not having chambers of startand reception of cleansing devices, and her bearing out at the redistribution of streams of gas and changes of them odes of operations of gas pipelines (increase of speeds of streams, change of temperature of the transported environment) related to it.
For cleaning of cavity of pipelines are presently used:
– washing with admission of cleansing piston or piston-delimiter;
– blowing out with admission cleansing and at a necessity a piston-delimiter;
– blowing out without admission of cleansing pistons.

The constructions of cleansing pistons and pistons-delimiters are described, for example, in [2].

The first two methods are recommended for cleaning of pipelines by a diameter a 219 mm and can be used only at presence of cleansing pistons and pistons-delimiters. In addition, not all areas of main gas pipelines can be cleared with their use. So, for example, the about 7,5 thousand kilometres of gas pipelines on-the-road OAO "Gasprom" is not equipped by the chambers of reception and start of cleansing devices. In this connection we will consider the method of cleaning of MG without their.

To cleaning without application of cleansing pistons and pistons-delimiters pipelines can be subjected by a diameter, not exceeding a 219 mm and long a less than 5 km. Cleaning comes true due to the speed streams of gas from the receivers created on an adherent area or compressors with a high yield. For blowing out of gaspipeline natural gas can be used from an operating gaspipeline or mining hole, skipped through the separator of gas drainage. For realization of this operation from a pipeline it is necessary to force out air. Expulsing is considered complete, when maintenance of oxygen in gas going out a pipeline makes no more than 2% [3].

Blowing out without cleansing devices is most simple on technical realization and is used often enough. In-process [4] results over of experimental research of bearing-out of accumulations of water, diesel fuel, aerooil and glycerin from the transparent pipeline of small diameter are brought. It is set that at the angles of slope of ascending area, making 2°, they dart out wholly at speeds of gas from a 7.8-11.6 m/s. In the next publication of the same author [5] a calculation formula over is brought already for the calculation of speed of gas, providing a bearing-out liquid wholly. As she is got on the basis of experimental
data of work [4] that the bearing-out on-speed of gas lies approximately in the same.

It is set an experience way, that for expulsing of liquid gas speed at blowing out must be anymore 17 m/s [3]. At a failure to observe of this condition a necessary effect will not be, because the less rate of movement of gas unsuffices for the bearing-out of liquid and particulate matters. On the other hand, gas speed has to be limited with that to decrease his losses at blowing out. It is undifficult to see that bearing-out speeds of gas, looke dafter in practice and expected on a formula from work [5], differentiate in 1.5-2 times.

Reason of such diver gence consists in that in laboratory terms it is practically impossible to provide true likeness of processes aleak in main gas pipelines.

Thus, the problem of description of terms of the complete moving away of liquid accumulations remains the stream of the pumped over gas.

Receipt of general view of calculation dependence. The process of bearing-out of liquid accumulation the stream of the pumped over gas is begun with that from him the fragments of liquid unstuck and move together with gas. Coming from the physical picture of the phenomenon, it is possible to suppose that on the terms of moving away of accumulations of liquid must have influence the stream of the pumped over gas next factors: gas, speed diameter of pipeline of D, angle of slope of ascending area of pipeline to horizon α, closeness of liquid and gas pand ρg, viscosity of liquid and gas ν and νg, a surface-tension on a border gave away phases σ, acceleration of the free falling of g, volume of accumulation of liquid of Vж.

Accordingly, value the brought speed over of the liquid take naway under act of expense of gas it is possible to present in a kind.

$$\omega_{ж} = f(\omega_2, V_ж, V_2, \rho_ж, \rho_2, D, \sigma, g, \sin \alpha)$$

(1)

On the basis of method of dimensional (П-теоремы) analysis [6], dependence (1) can be transformed in the equalization made from dimensionless
combinations of the same physical sizes. In this case an amount of dimensionless complexes will be a less initial number of physical sizes of \( n \) is on the amount of basic or primary sizes of \( k \), by means of that the dimension of the examined initial parameters (i.e. \( m = n - k \) ) can be presented. Treatment of experimental researches here is very simplified, because connections between the dimensionless criteria of similarity, as a rule, come to light simpler, than connections with ordinary size sizes, and passing to dimensionless correlations in a number of cases allows to distribute the got results on model objects.

In hydrodynamics there are three primary dimensions: mass of \( M \), time of \( T \), length \( L \), i.e. \( k = 3 \). The considered physical sizes expressed by independent primary dimensions are presented in a Table 1.

Table 1. Dimensions of parameters influencing on the dynamics of washing away of liquid accumulations

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Denotation</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of gas and liquid, m/s</td>
<td>( \omega_g, \omega_w )</td>
<td>LT(^{-1})</td>
</tr>
<tr>
<td>Density of liquid and gas, kg/ m(^3)</td>
<td>( \rho_w, \rho_r )</td>
<td>ML(^{-3})</td>
</tr>
<tr>
<td>Diameter of pipeline, m</td>
<td>( D )</td>
<td>L</td>
</tr>
<tr>
<td>Coefficient of surface-tension, N/m</td>
<td>( \sigma )</td>
<td>MT(^{-2})</td>
</tr>
<tr>
<td>Acceleration of the free falling, m/ s(^2)</td>
<td>( g )</td>
<td>LT(^{-2})</td>
</tr>
<tr>
<td>Volume of accumulation of liquid, m(^3)</td>
<td>( V_w )</td>
<td>L(^3)</td>
</tr>
<tr>
<td>Viscosity of liquid and gas, m(^2)/s</td>
<td>( \nu_w, \nu_r )</td>
<td>L(^2)T(^{-1})</td>
</tr>
<tr>
<td>Sine of angle of slope of pipeline</td>
<td>( \sin \alpha )</td>
<td>-</td>
</tr>
</tbody>
</table>

We will present expression (1) in a kind

\[
f(\omega_w, \omega_g, \nu_w, \nu_g, \rho_w, \rho_r, D, \sigma, g, \sin \alpha) = 0.
\]  

\( (2) \)

In examined case number initial physical grandeur of \( n = 10 \). According to a \( \Pi \)-theorem, expression (2) can be taken to dependence between \( m = \) by \( 10-3 = 7 \) dimensionless combinations, i.e. instead of (2) to write down:

\[
\Phi(\Pi_1, \Pi_2, \Pi_3, \Pi_4, \Pi_5, \Pi_6, \Pi_7) = 0,
\]  

\( (3) \)

where \( \Pi_1, \Pi_2, \Pi_3, \Pi_4, \Pi_5, \Pi_6, \Pi_7 \) – dimensionless complexes.
For determination of these complexes we will choose from a number initial physical sizes three (on the number of independent units), that include all primary dimensions, for example D, \( \rho \). We will work out equations of dimensions, uniting the chosen sizes with each of five remaining variables, presenting numbers \( \Pi \)

\[
\begin{align*}
\Pi_1 &= D^5 \cdot \rho^3 \cdot \omega_\infty^3 \cdot \omega_c^3; \\
\Pi_2 &= D^5 \cdot \rho^3 \cdot \rho_{\infty}^3 \cdot \nu_\infty; \\
\Pi_3 &= D^5 \cdot \rho^3 \cdot \rho_{\infty}^3 \cdot \nu_c; \\
\Pi_4 &= D^5 \cdot \rho^3 \cdot \rho_\infty^3 \cdot \rho_\infty^3 \cdot \sigma; \\
\Pi_5 &= D^5 \cdot \rho^3 \cdot \rho_\infty^3 \cdot \gamma; \\
\Pi_6 &= D^5 \cdot \rho^3 \cdot \rho_\infty^3 \cdot \gamma; \\
\Pi_7 &= D^5 \cdot \rho^3 \cdot \rho_\infty^3 \cdot \sin \alpha.
\end{align*}
\]

Indexes of degree at \( D \) in expression (4) is necessary to pick up so that complexes \( \Pi_1 - \Pi_7 \) did not have a dimension. For example, from the condition of homogeneity of dimensions for a number \( \Pi_1 \) it is possible to write down

\[
M^0L^0T^0 = L^5 \cdot (LT^{-1})^3 \cdot (ML^{-3})^3 \cdot LT^{-1},
\]

from where from comparison of indexes of degree we have the system of equalizations:

\[
\begin{align*}
x_1 + y_1 - 3z_1 + 1 &= 0; \\
y_1 - 1 &= 0; \\
z_1 &= 0.
\end{align*}
\]

Deciding the system (6), we get: \( x_1 = 0, y_1 = -1 \) and \( z_1 = 0 \). Thus, the parameter of \( \Pi_1 \) is equal to the relation.

Expressions for being of other \( \Pi \)-criteria, got like, look like:

\[
\begin{align*}
\Pi_2 &= \frac{\nu_\infty}{D \omega_c}; \\
\Pi_3 &= \frac{\nu_c}{D \omega_\infty}; \\
\Pi_4 &= \frac{\rho_\infty}{\rho_\infty}; \\
\Pi_5 &= \frac{\sigma}{D \omega_c \rho_c} = We_c; \\
\Pi_6 &= \frac{D g}{\omega_c^3} = \frac{1}{Fr_c}; \\
\Pi_7 &= \sin \alpha.
\end{align*}
\]

where \( We_c \) – is a number of Weber, \( Fr_c \) – is a number of Frud.

A number of Weber – criterion of similarity in hydrodynamics, qualificatory attitude of inertia of liquid toward a surface-tension. A number of Frud –
criterion of similarity, characterizing a betweenness by forces of inertia and weight, operating on the elementary volume of liquid and gas. Increasing a numerator and denominator in expression for \( \Pi_1 \) on the area of cross-sectional, we get

\[
\Pi_1 = \frac{\omega_{\infty}}{\omega_v} = \frac{Q_{\infty}}{Q_v}
\]

(8)

Uniting value \( \Pi_2 \) and \( \Pi_3 \), we get

\[
\Pi_{2,3} = \frac{V_v}{V_{\infty}}
\]

(9)

Thus, finally expression (3) can be presented in a kind

\[
\Phi(\frac{Q_{\infty}}{Q_v}, \frac{V_v}{V_{\infty}}, \frac{\rho_v}{\rho_{\infty}}, We_v, Fr_r, \sin \alpha) = 0.
\]

(10)

Intensity of bearing-out of accumulation of liquid is characterized in size relative expense of liquid, of equal to the relation middle expense of liquid of \( Q_{\infty} \) to the expense of gas of \( Q_v \). Accordingly the relative expense of the taken away liquid can be written down in a kind

\[
\beta_{\infty} = f(\frac{V_v}{V_{\infty}}, \frac{\rho_v}{\rho_{\infty}}, We_v, Fr_r, \sin \alpha)
\]

(11)

We will present the sought after dependence in a kind

\[
\beta_{\infty} = A_0 \cdot \left(\frac{V_{\infty}}{V_v}\right)^{A_1} \cdot \left(\frac{\rho_v}{\rho_{\infty}}\right)^{A_2} \cdot We_v^{A_3} \cdot Fr_r^{A_4} \cdot \sin \alpha^{A_5},
\]

(12)

where \( A_0 - A_5 \) – permanent numerical coefficients.

Realization of experimental researches. Sizes of coefficients of \( A_0 - A_5 \) are unknown. For their determination experiments were conducted on setting a fundamental chart over of that is brought on Figure 1.
Figure 1. Fundamental chart of the experimental setting for the study of washing away of liquid accumulations by a gas stream: 1 – is a source of the compressed gas; 2 – is a receiver; 3 – is an unloader “after itself”; 4 – is rotameter; 5 – is a faucet; 6 – is a manometer; 7 – is a hinge; 8 – is the investigated area; 9 – is a vessel for collection of liquid; 10 – is a separator

For creation of gas stream in setting the use of piston compressor was initially planned with a receiver. In connection with the not high productivity of piston compressors and insufficiency of volume of receivers as a source of gas bottles were chosen by volume of 40 litres, filled by technical nitrogen. Gaseous nitrogen is rare gas without a color and smell, does not render a harmful effect on an environment, unotoxic. He is got during gasification of liquid nitrogen mine-out from atmospheric air the method of low temperature rectification. Thus, application of nitrogen in a laboratory is more safe and does not require the special facilities of defence.

For decompressing of gas a reducing gear was applied 3. Gear-device, serving for decompressing of the gas taken away from a bulb 1 to the worker and for automatic maintenance of this pressure permanent, regardless of change of pressure of gas in bulb.

A reducing gear joined a bulb a nut. Gas, passing a filter, got in a chamber high-pressure. The rotation of regulation screw was propose the set value of pressure.
For control pressure manometers were used in a bulb and working chamber. Gas extraction came true through a nipple that joins the experimental setting by means of hoses high-pressure.

For determination of gas expense the flowmeter of float-type- rotameter was used. He consists of conical tube going away upwards, a float-indicator moves into that. This device was calibrated and calibrate at the plant manufacturer for the use in the system with by nitrogen.

By means of faucet 5 disconnecting of the system came true from the source of the compressed air. A faucet was equipped by the quick disconnect coupling, that allowed operatively to disconnect setting from the source of the compressed air. Pouring of liquid, formative the accumulation of was carried out through an ingate by means of crater. For the change of orientation of pipeline in space the experimental setting was equipped by a barturner 7. Original appearance of barturner with the pipe envisaged on him is shown on a picture 2. As founding for a stand 2 the sheet of plywood was used. On him founding was set 3 for an experimental area 5, being around sheet of plywood. For realization of experiments all was made 3 different areas of pipes with internal diameters 24, 36 and 40 мм of pipe was cut and then stuck together under the corner of 150 degrees in relation to each other. Fastening of pipes to the stand came true by means of collars of corresponding diameter. From below on founding 3 there is a scale 6 for determination of angle of slope of ascending part of pipeline. For the change of angle of slope of ascending part, and also fixing of pipes on the basis of stand is made hold-down 4. A stand was suspended by means of loops 1.

Original appearance of the experimental setting for the study of bearing-out of accumulations of liquid from the lowered areas of pipeline is presented on a Figure 3.
Figure 2. Installation diagram: 1 – is loops fastening; 2 – is foundation; 3 – is founding for a pipe; 4 – is a tight-fisted screw; 5 – is an area of gas pipeline; 6 – is a scale of angle of slope of gas pipeline

Figure 3. Original appearance of the experimental setting
With the purpose of reduction of number of experiments without the loss of quality of the got data and scope of large turn-down of parameters the rational planning of experiments was produced. For main factors - gas expense, diameter of pipeline, angle of slope of ascending part of pipeline and volume of accumulation of liquid were chosen for this purpose. In this case it is possible influence of other factors to scorn, as on this stage it is important to distinguish those factors that play the flow of hydrodynamic processes of bearing-out of accumulation a key role. Through a method Taguchi was got next matrix of planning of experiments for 4 factors on 3 levels (Table 2), where 1-3 are levels of operating factors.

Table 2. Matrix of planning of experiments on a pilot plant

<table>
<thead>
<tr>
<th>Expense of gas</th>
<th>Diameter of pipeline</th>
<th>Angle of slope of ascending part of pipeline</th>
<th>Volume of accumulation of liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Methodology of realization of experiments was following. In a stand, by means of collars, the chosen clear area of pipe was fastened. By means of measuring glass the necessary for an experiment volume of liquid was measured off. For creation of more contrasting environment comfortable for the visual supervision of process of bearing-out, a liquid was tinted by the indicator of CoSO₄. Filling of model of gas pipeline was produced by means of the crater connected to the quick disconnect coupling on included in the investigated area.

Then a stand was connected to the line high-pressure. By means of regulators of reducing gear the set pressure was proposed on an entrance. A gas expense was controlled by means of rotameter. An experiment proceeded to the
complete bearing-out of accumulation. Given an experiment recurred with the change of volume of accumulation and angle of slope of ascending part. After it changing of pipeline was produced on the area of other diameter and the next series of experiments were conducted. The results of the conducted experiments are presented in a Table 3.

Table 3. Experimental data on the bearing-out of accumulations of liquid by gas

<table>
<thead>
<tr>
<th>Volume of accumulation, ml</th>
<th>Diameter, mm</th>
<th>Angle of slope of pipeline, hail</th>
<th>Expense of gas, litre of mines</th>
<th>Time of complete bearing-out of accumulation, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>24</td>
<td>5</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>36</td>
<td>15</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>25</td>
<td>200</td>
<td>a bearing-out does not take place</td>
</tr>
<tr>
<td>40</td>
<td>24</td>
<td>25</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>15</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>5</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>25</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>36</td>
<td>5</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>15</td>
<td>400</td>
<td>3</td>
</tr>
</tbody>
</table>

Processing of experimental data allowed to find the sought after coefficients, as a result a formula (12) assumed an air

\[ \beta_{we} = 0,0004 \cdot Fr^{0.546} \cdot We^{-0.156} \cdot (1 + \sin \alpha)^{-2.61}. \] (13)

It is undifficult to see that correlations of viscidities and closenesses of liquid and gas are absent in her. It is explained by that all experiments were conducted only for one pair of fluids: nitrogen and water. The formula got on this account is in applicable for implementation of practical calculations. But to such aim the authors of the article before itself did not put. The point is that, as a rule, a physical experiment in laboratory terms does not design terms fully, taking place in a main gas pipeline. Taking into account said, in basis of receipt of suitable for practice calculation dependence for a calculation the method of mathematical design was fixed in program \textit{ComsolMultiphysics}. 

© Электронный научный журнал «Нефтегазовое дело». 2015. №5 http://www.ogbus.ru
Design of bearing-out of accumulations of liquid on computer. On the first stage the mathematical model of the experimental setting was created, a design was conducted at the physical parameters of corresponding to the model experiments. The certainly-element design of this task of multiphase hydrodynamics is based on the decision of the system of equalizations of Navier-Stokes, with the use of k are models of turbulence. Presence of two phases and change of border of their division taken into account through the method of function of level (*LevelSetMethod*). Stability of the got decisions is attained by the use of the special artificial methods - *stabilization methods* (that is especially important at difficult, changing in time, turbulent processes).

Spatial geometry of model is got as a result of confluence of two identical cylindrical elements located under a corner teach other. The level of accumulation of liquid was also added in a model, and his borders are certain. Thus all sizes and geometrical correlations fully correspond to such in the experimental setting. As a complete spatial model (Figure 4) has a plane of symmetry, then for reduction of time of calculations, and also for more evident presentation of results, a model was cut on this plane and further researches of what be going on processes were examined in her (Figure 5). Such approach did not distort of complete picture of what be going on, right qualitatively and in number described the process of bearing-out of accumulation liquid.

Since model geometry was certain, materials were chosen (*materials*), properties of that were set as functions of pressure and temperature. As fluid 1 nitrogen was chosen, as fluid 2 water was chosen. As sumption was also used, that properties of liquid accumulation are permanent and practically does not depend on a temperature and pressure. Such as sumption was done only for verification of data of model experiment, in case of design on large pipes (that will be considered in more detail below) dependences of physical parameters of fluids were fully taken into account on pressure and temperature.
Figure 4. Design of bearing-out of accumulation in a format 3D

Figure 5. 2D-modeling of bearing-out of accumulation
Since materials and their properties were set, border terms were written in. For walls (wall) the special border terms in that the so-called logarithmic functions were used for walls (logarithmic wall functions) were written in. For an entrance (inlet) the condition of permanent pressure was written in, furan exit (outlet) is a condition on pressure taking into account losses in the system that is automatically counted during a decision on general equalizations of balance.

As a process is examined, transitional in time, then it is necessary to define initial conditions. Initial conditions were set forth with some assumptions thus: motion in the accumulation of liquid is not present, the surface of accumulation of liquid is flat, gas moves above a liquid with some permanent speed. For the practical side of decision it is very importantly correct to "guess" initial parameters, as otherwise a process is beyond a model, and is unsteady, a decision can not be found. In order that to get these approximate initial parameters it was done following - at set geometry, properties of materials and border terms a decision was found as for a quasistationary process. The got parameters of decision from him were used as initial conditions for the moment of time of time=0. Such approach, in particular, is offered by the authors of programmatic package in case of difficult predictable tasks. In case of simple tasks it is possible to use the initial parameters calculated by hand on analytical formulas (for example, at the stationary laminar flow of Newtonian liquid).

In addition, the process investigated in a number of cases was extremely unsteady and to get a decision numeral methods not succeeded, as in iteration program ComsolMultiphysics unit not arrived at the degree of convergence is needed. It is explained by the high degree of non-linearity of the investigated phenomena that is extremely sensible to many parameters. In this connection the algorithm of numeral decision required extremely fine-tuning. Investigated processes - transitional in time. In spite of the fact that processes flow extremely quickly, they are however instantaneous, and are the smooth functions of time (not discrete). At the same time, if step at times algorithm of numeral decision appeared more than characteristic internal time of process, then an algorithm
gave out the error of absence of convergence. It is explained by that an algorithm had to confront and decide equalizations on the step of time $\tau$ and $\tau_1$, however in the system considerable changes happened already, and similar connection resulted in deprived sense to the results. One of going near the decision of similar sort of difficulties, applied in process, described below. Work of algorithm of search of decision is considerably facilitated by a "smooth start", when the investigated function of change of parameter grows not discretely, by a jump, and is a quickly increasing smooth indissoluble function. It was specially important to take into account this circumstance at the task of border terms of variables in time (in our case this will be pressure, speed or expense on included in the investigated area of pipeline). On occasion by a border condition on an entrance speed of flow of gas was accepted in a pipe. Her time-history was set through the smoothed (smoothing) out function of Hevisade. The classic function of Hevisade grows a jump as presented on Figure 6.

![Figure 6. Classic function of Hevisade](image)

However, the smoothed out variant (for the design of bearing-out of accumulations on the pipes of large-break) was used in the program ComsolMultiphysics. The use of this variant is carried in itself by next physical sense - hydrodynamic processes can flow very quickly, but they are unbreaks in time. For example, opening of faucet on a bulb with nitrogen, produces gas in the experimental setting, a similar process was considered as instantaneous, however for exact research of difficult hydrodynamic stop-actions such
approach is unacceptable and an exit was found in the use of the special functions for description of transitional processes.

On Figure7 the smoothed out function of Hevisade is presented in the conditions of concrete task, she is smooth functions, and does not have breaks in time. Here gas speed on included in a pipe increases a from 7 to 10 m/s for time equal 1 p. Area of smoothing out is also accepted 1 p. Similar approach allows to the algorithm of numeral decision to attain the necessary degree of convergence, as the investigated processes, firstly, do not carry the breaks of jumps, secondly, change relatively fluently and an algorithm has time adequately react on changes in the system. Other important used reception was reduction of step at times, with that aim, that an algorithm had time to watch changes a leak in system.

In order that to decide the system of differential equalizations in partials at a time-varying process in the set geometry, taking into account initial and border conditions, and also taking into account properties of materials, it was necessary to be set by a corresponding net. To break up model geometry on the eventual number of elements, in the knots of that will be man-hunted decision of totality of equalizations on every step at times. The form of elements, their amount, their time-history, substantially influence on the process of decision and got results. At the design of bearing-out of liquid accumulation from the lowered area of gas pipeline a net was set with next features.

A net was formed by extraordinarily thick, as a time-varying multiphase hydrodynamic process was designed. A net was divided into three parts (Figure 8): Skim at walls, where the special "rectangular" elements of pony-size were used.
The selection of this area is needed in an order more precisely to take into account influence of frontier layer and what be going on in him processes. This feature is related to the specific of application of logarithmic functions for walls (Logarithmic wall functions). Area gas moves in that was filled by a "three-cornered" net, taking into account a point 1 it is. Area of accumulation of liquid, was filled by an extraordinarily thick "three-cornered" net that is tied to her through the border of division of phases. Thus, at motion of liquid and at tearing away from her dripping snow, a net automatically moved together with them. It allowed to get exact decisions not only on the initial stage of time but also along the whole length of process. In addition, it provided stability of decision, as a system became more certain. For the process of decision built-in "solver" in that among other influenced parameters was chosen, it is important to pay attention to following:
- the scale of speed and pressure is large, i.e. these parameters in relative sizes changed in significantly, and there is not sense to calculate their values especially exactly;

- a scale of parameters of turbulence of k is $\varepsilon$-models vice versa, accepted on a few orders less than, as parameters of turbulence strongly changed, and their changes resulted infar going consequences for all model;

- for the increase of exactness of decision a step was diminished at times. In case of stride at times because of complication of multiphase hydrodynamic process it is possible to expect another picture, that in turn threatened wrong both quantitative and quality results;

- for reduction of time of calculations symmetry about that talked higher was used.

Figure 8. Net (mesh) chosen in accordance with physical nature of the investigated processes
Design results. Foremost, adequacy of the worked out method of design of bearing-out of accumulations of liquid was tested by a gas stream. For this purpose were drawn on the results of laboratory physical experiment. Parameters of calculable experiment, design results on the pipe of small diameter, and also the equalization got during processing of data driven to the Table 4. For comfort all data are presented by comparison to data of experimental researches.

Table 4. Comparison of results physical and calculable experiments

<table>
<thead>
<tr>
<th>Physical experiment</th>
<th>A calculable experiment is in an environment ComsolMultiphysics 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Geometry</strong></td>
<td></td>
</tr>
<tr>
<td>Diameters, mm</td>
<td>24, 36, 40</td>
</tr>
<tr>
<td>24, 36, 40</td>
<td></td>
</tr>
<tr>
<td>Angle of slope of ascending part, hail.</td>
<td>5, 15, 25</td>
</tr>
<tr>
<td>5, 15, 25</td>
<td></td>
</tr>
<tr>
<td>Volume of accumulation, ml</td>
<td>20, 30, 40</td>
</tr>
<tr>
<td>20, 30, 40</td>
<td></td>
</tr>
<tr>
<td>Parameters of environments</td>
<td></td>
</tr>
<tr>
<td>nitrogen gaseous is water</td>
<td>nitrogen gaseous is water</td>
</tr>
<tr>
<td>Time of moving away of accumulations</td>
<td>2 - 10 c</td>
</tr>
<tr>
<td>1,6 – 9,6 c</td>
<td></td>
</tr>
<tr>
<td>Equalization for the calculation of relative expense of liquid</td>
<td></td>
</tr>
<tr>
<td>[ \beta_\infty = 0,00051 \cdot Fr^{0,563} We^{-0,151} \cdot (1 + \sin \alpha)^{-2,01} ]</td>
<td>[ \beta_\infty = 0,0004 \cdot Fr^{0,546} We^{-0,156} \cdot (1 + \sin \alpha)^{-2,61} ]</td>
</tr>
</tbody>
</table>

From a table evidently, that at the identical geometrical parameters of setting and physical parameters of environments time of bearing-out of accumulations differs insignificantly. Distinction in time of bearing-out of comparable with errors. The coefficients of A0-A3, got during the analysis of experimental data of model, are near to the coefficients got at processing of data from the experimental setting.

Making sure in adequacy of the created model of bearing-out of liquid accumulations on the pipes of small diameter, on the next stage of researches with her help executed the design of bearing-out of liquid accumulations from the pipes of large-break. Thus the limits of change of the sizes included in
equalization (12) and the rational planning of experiment is conducted on the basis of robust plans of Taguchi were certain at first. As a result of processing of the data got during a calculable experiment, equalization of relative expense of the liquid taken away from main gas pipelines by the stream of the transported gas purchased the following kind

\[
\beta_{x_c} = 114,13 \cdot \left(\frac{\mu_{x_c}}{\mu_c}\right)^{0.0168} \cdot \left(\frac{\rho_{x_c}}{\rho_c}\right)^{-0.9} \cdot Fr^{1.298} \cdot We^{-0.945} \cdot (1 + \sin \alpha)^{0.616}
\]  

(14)

Quality of the got equalization was tested through the standard methods of mathematical statistics and confessed by satisfactory.

Conclusions

1 Calculation dependence suitable for the quantitative estimation of dynamics of washing away of liquid accumulations in main gas pipelines is Got.

2 Methodology of description of the real processes is Worked out in main pipelines on the basis of results of laboratory experiments on models.

Постановка задачи. Анализ статистических данных по качеству поставляемого на экспорт газа показывает, что имеют место случаи ухудшения его качества по температуре точки росы, а также по содержанию влаги и углеводородам относительно контрактных требований. Показатели же качества осушки газопроводов после строительства и капремонтов нормативами не установлены, и в проектах строительства объектов не обосновываются.

По разным причинам очистка и осушка газопроводов может выполняться с нарушением технологии, что вызывает ухудшение качества газа, поставляемого потребителям, в том числе на экспорт, как это имело место в 2004 году при подаче газа по газопроводу «Ямал-Европа» через ГИС «Кондратки».
Изучение подобных эпизодов показало, что причинами повышения точки росы могут являться:

1) некачественная подготовка газа на промыслах;

2) неполное удаление воды после гидроиспытаний и невыполнение работ по осушке на большинстве объектов капитального строительства, реконструкции и капитального ремонта магистральных, межпромысловых газопроводов, технологических обвязок КС, ГРС, УКПГ месторождений и ПХГ, происходящее по причине недостаточного количества мобильных установок осушки;

3) попадание жидкости в полость трубопроводов при авариях и строительно-монтажных работах;

4) наличие накопившейся жидкости в полости магистральных и межпромысловых газопроводов, не имеющих камер запуска и приема очистных устройств, и ее вынос при перераспределении потоков газа и связанных с этим изменений режимов работы газопроводов (увеличение скоростей потоков, изменение температуры транспортируемой среды) [1].

Для очистки полости трубопроводов в настоящее время применяются:
– промывка с пропуском очистного поршня или поршня-разделителя;
– продувка с пропуском очистного и при необходимости поршня-разделителя;
– продувка без пропуска очистных поршней.

Конструкции очистных поршней и поршней-разделителей описаны, например, в [2].

Первые два метода рекомендуются для очистки трубопроводов диаметром 219 мм и могут быть использованы только при наличии очистных поршней и поршней-разделителей. Кроме того, не все участки магистральных газопроводов могут быть очищены с их использованием. Так, например, около 7,5 тыс. км газопроводов, эксплуатируемых ОАО «Газпром», не оборудованы камерами приёма и запуска очистных
Очистке без применения очистных поршней и поршней-разделителей могут быть подвергнуты трубопроводы диаметром, не превышающим 219 мм и длиной менее 5 км. Очистка осуществляется за счёт скоростных потоков газа из ресиверов, создаваемых на прилегающем участке или компрессоров с высокой производительностью. Для продувки газопровода может быть использован природный газ от действующего газопровода или скважины, пропущенный через сепаратор осушки газа. Для проведения данной операции из трубопровода следует вытеснить воздух. Вытеснение считается законченным, когда содержание кислорода в газе, выходящем из трубопровода, составляет не более 2% [3].


Опытным путем установлено, что для вытеснения жидкости скорость газа при продувке должна быть больше 17 м/с [3]. При несоблюдении этого условия нужного эффекта не будет, так как меньшая скорость движения газа недостаточна для выноса жидкости и твердых частиц. С другой стороны, скорость газа приходится ограничивать с тем, чтобы уменьшить его потери при продувке.
Нетрудно видеть, что выносные скорости газа, наблюдаемая в практике и рассчитанная по формуле из работы [5], различаются в 1,5 – 2 раза. Причина такого расхождения заключается в том, что в лабораторных условиях практически невозможно обеспечить полное подобие процессов, протекающих в магистральных газопроводах.

Таким образом, проблема описания условий полного удаления жидкостных скоплений потоком перекачиваемого газа остается нерешенной.

Получение общего вида расчетной зависимости. Процесс выноса жидкостного скопления потоком перекачиваемого газа начинается с того, что от него отрываются фрагменты жидкости и движутся вместе с газом. Исходя из физической картины явления, можно предположить, что на условия удаления скоплений жидкости потоком перекачиваемого газа должны оказывать влияние следующие факторы: скорость газа \( v_g \), диаметр трубопровода \( D \), угол наклона восходящего участка трубопровода к горизонту \( \alpha \), плотность жидкости и газа \( \rho_j \) и \( \rho_g \), вязкость жидкости и газа \( \nu_j \) и \( \nu_g \), поверхностное натяжение на границе разделя фаз \( \sigma \), ускорение свободного падения \( g \), объем скопления жидкости \( V_j \).

Соответственно, значение приведённой скорости жидкости, выносимой под воздействием расхода газа можно представить в виде

\[
\omega_j = f(\omega_g, v_j, v_g, \rho_j, \rho_g, D, \sigma, g, \sin \alpha)
\]

(1)

На основании метода анализа размерностей (II-теоремы) [6], зависимость (1) можно преобразовать в уравнение, составленное из безразмерных комбинаций тех же физических величин. В этом случае количество безразмерных комплексов будет меньше исходного числа физических величин п на количество основных или первичных величин \( k \), с помощью которых может быть представлена размерность рассматриваемых исходных параметров (т.е. \( m = n - k \)). Обработка экспериментальных исследований при этом весьма упрощается, так как
связи между безразмерными критериями подобия, как правило, выявляются проще, чем связи с обычными размерными величинами, а переход к безразмерным соотношениям в ряде случаев позволяет распространять полученные результаты на натурные объекты.

В гидродинамике имеются три первичные размерности: масса М, время Т, длина Л, т.е. \( k = 3 \). Рассмотренные физические величины, выраженные независимыми первичными размерностями, представлены в таблице 1.

Таблица 1. Размерности параметров, влияющих на динамику размыва жидкостных скоплений

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Обозначение</th>
<th>Размерность</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорость газа и жидкости, м/с</td>
<td>( \omega, \omega_j )</td>
<td>ЛТ(^{-1})</td>
</tr>
<tr>
<td>Плотность жидкости и газа, кг/м(^3)</td>
<td>( \rho_j, \rho_g )</td>
<td>МЛ(^{-3})</td>
</tr>
<tr>
<td>Диаметр трубопровода, м</td>
<td>D</td>
<td>Л</td>
</tr>
<tr>
<td>Коэффициент поверхностного натяжения, Н/м</td>
<td>( \sigma )</td>
<td>МЛТ(^{-2})</td>
</tr>
<tr>
<td>Ускорение свободного падения, м/с(^2)</td>
<td>g</td>
<td>ЛТ(^{-2})</td>
</tr>
<tr>
<td>Объем скопления жидкости, м(^3)</td>
<td>( V_j )</td>
<td>Л(^3)</td>
</tr>
<tr>
<td>Вязкость жидкости и газа, м(^2)/с</td>
<td>( \nu_j, \nu_g )</td>
<td>Л(^2)Т(^{-1})</td>
</tr>
<tr>
<td>Синус угла наклона трубопровода</td>
<td>( \sin \alpha )</td>
<td>-</td>
</tr>
</tbody>
</table>

Представим выражение (1) в виде

\[
f(\omega, \omega_j, \nu, \nu_j, \rho_j, \rho_g, D, \sigma, g, \sin \alpha) = 0.\] (2)

В рассматриваемом случае число исходных физических величин \( n = 10 \). Согласно П-теореме, выражение (2) можно свести к зависимости между \( m = 10 - 3 = 7 \) безразмерными комбинациями, т.е. вместо (2) записать:

\[
\Phi(P_1, P_2, P_3, P_4, P_5, P_6, P_7) = 0,\] (3)

где \( P_1, P_2, P_3, P_4, P_5, P_6, P_7 \) – безразмерные комплексы.

Для определения этих комплексов выберем из числа исходных физических величин три (по числу независимых единиц измерения), которые включают все первичные размерности, например Д, \( \omega_j \), \( \rho_j \). Составим уравнения размерностей, объединяющие выбранные величины с каждой из пяти оставшихся переменных, представив числа \( P_i \)
\[ \Pi_1 = D^x \cdot \omega_x^y \cdot \rho_g^z \cdot \omega_w \; ; \quad \Pi_2 = D^x \cdot \omega_z^y \cdot \rho_g^z \cdot v_z \; ; \quad \Pi_3 = D^x \cdot \omega_z^y \cdot \rho_g^z \cdot v_z \; ; \quad \Pi_4 = D^x \cdot \omega_z^y \cdot \rho_g^z \cdot \rho_w^z \; ; \quad \Pi_5 = D^x \cdot \omega_z^y \cdot \rho_g^z \cdot \sigma \; ; \quad \Pi_6 = D^x \cdot \omega_z^y \cdot \rho_g^z \cdot g \; ; \]
\[ \Pi_7 = D^x \cdot \omega_z^y \cdot \rho_g^z \cdot \sin \alpha . \]

Показатели степени при \( D \), \( \omega_z \), \( \rho_g \) в выражение (4) следует подбирать таким образом, чтобы комплексы \( \Pi_1 - \Pi_7 \) не имели размерности. Например, из условия однородности размерностей для числа \( \Pi_1 \) можно записать

\[ M^0 L^0 T^0 = L^y \cdot (LT^{-1})^z \cdot (ML^{-3})^z \cdot LT^{-1}, \]

откуда из сравнения показателей степени имеем систему уравнений:

\[ x_1 + y_1 - 3z_1 + 1 = 0; \]
\[ -y_1 - 1 = 0; \]
\[ z_1 = 0. \]

Решая систему (6), получаем: \( x_1 = 0 \), \( y_1 = -1 \) и \( z_1 = 0 \). Таким образом, параметр \( \Pi_1 \) равен отношению \( \omega_w / \omega_x \).

Выражения для нахождения остальных \( \Pi \)-критериев, полученные аналогично, имеют вид:

\[ \Pi_2 = \frac{v_z}{D \omega_z} \; ; \quad \Pi_3 = \frac{v_x}{D \omega_z} \; ; \quad \Pi_4 = \frac{p_z}{\rho_w} \; ; \quad \Pi_5 = \frac{\sigma}{D \omega_z \rho_g} = We_z \]
\[ \Pi_6 = \frac{D g}{\omega_z^2} = \frac{1}{Fr_g} \; ; \quad \Pi_7 = \sin \alpha . \]

где \( We_z \) - число Вебера, \( Fr_g \) - число Фруда.

Число Вебера – критерий подобия в гидродинамике, определяющий отношение инерции жидкости к поверхностному натяжению.

Число Фруда – критерий подобия, характеризующий соотношение между силами инерции и тяжести, действующими на элементарный объём жидкости и газа.

Умножив числитель и знаменатель в выражении для \( \Pi_1 \) на площадь поперечного сечения, получаем
Объединив значения \( \Pi_2 \) и \( \Pi_3 \), получаем

\[
\Pi_{2,3} = \frac{V_c}{V_\infty}.
\]  

Таким образом, окончательно выражение (3) можно представить в виде

\[
\Phi \left( \frac{Q_\infty}{Q_x}, \frac{V_c}{V_\infty}, \frac{P_c}{P_\infty}, W_e, Fr_e, \sin \alpha \right) = 0. 
\]  

Интенсивность выноса скопления жидкости характеризуется величиной относительного расхода жидкости \( \beta_x \), равного отношению среднего расхода жидкости \( Q_j \) к расходу газа \( Q_g \). Соответственно относительный расход выносимой жидкости можно записать в виде

\[
\beta_x = f \left( \frac{V_c}{V_\infty}, \frac{P_c}{P_\infty}, W_e, Fr_e, \sin \alpha \right) 
\]  

Представим искомую зависимость в виде

\[
\beta_x = A_0 \cdot \left( \frac{V_\infty}{V_c} \right)^{A_4} \cdot \left( \frac{P_c}{P_\infty} \right)^{A_2} \cdot W_e^{A_3} \cdot Fr_e^{A_1} \cdot \sin \alpha^{A_5},
\]  

где \( A_0 \) - \( A_5 \) – постоянные числовые коэффициенты.

Проведение экспериментальных исследований. Величины коэффициентов \( A_0 \) - \( A_5 \) являются неизвестными. Для их определения были проведены эксперименты на установке, принципиальная схема которой приведена на рисунке 1.

Для создания потока газа в установке изначально планировалось использование поршневого компрессора с ресивером. В связи с невысокой производительностью поршневых компрессоров и недостаточностью объёма ресиверов в качестве источника газа были выбраны газовые баллоны объёмом 40 литров, заполненные техническим азотом. Газообразный азот – инертный газ без цвета и запаха, не оказывает опасного влияния на окружающую среду,
нетоксичен. Его получают при газификации жидкого азота, выработанного из атмосферного воздуха способом низкотемпературной ректификации. Таким образом, применение азота в лаборатории является более безопасным и не требует специальных средств защиты.

Рисунок 1. Принципиальная схема экспериментальной установки для изучения размыва жидкостных скоплений потоком газа:
1 – источник сжатого газа; 2 – ресивер; 3 – регулятор давления «после себя»; 4 – ротаметр; 5 – кран; 6 – манометр; 7 – шарир; 8 – исследуемый участок; 9 – сосуд для сбора жидкости; 10 – сепаратор

Для понижения давления газа был применён редуктор 3. Редуктор-прибор, служащий для понижения давления газа, отбираемого из баллона 1 до рабочего и для автоматического поддержания этого давления постоянным, независимо от изменения давления газа в баллоне.

Редуктор присоединялся к баллону накидной гайкой. Газ, пройдя фильтр, попадал в камеру высокого давления. Вращением регулировочного винта выставляли заданное значение давления.

Для контроля давление в баллоне и рабочей камере использовались манометры. Отбор газа осуществлялся через ниппель, который присоединяется к экспериментальной установке с помощью шлангов высокого давления.
Для определения расхода газа был использован расходомер поплавкового типа – ротаметр. Он состоит из конической трубки, расходящейся вверх, внутри которой перемещается поплавок-индикатор. Данный прибор был откалиброван и проградуирован на заводе изготовителе для использования в системе с азотом.

С помощью крана 5 осуществлялось отключение системы от источника сжатого воздуха. Кран был оснащен быстроразъемным соединением, что позволяло оперативно отсоединять установку от источника сжатого воздуха. Налив жидкости, образующей скопление, осуществлялся через входное отверстие с помощью воронки.

Для изменения ориентации трубопровода в пространстве экспериментальная установка была оборудована поворотным устройством 7. Внешний вид поворотного устройства с закреплённой на нём трубой показан на рисунке 2.

В качестве основания для стенда 2 был использован лист фанеры. На нём было установлено основание 3 для экспериментального участка 5, представляющее собой круглый лист фанеры. Для проведения экспериментов всего было изготовлено 3 различных участка труб с внутренними диаметрами 24, 36 и 40 мм. Трубы разрезались и затем склеивались под углом 150 градусов относительно друг друга. Крепление труб к стенду осуществлялось с помощью хомутов соответствующего диаметра. Снизу на основании 3 находится шкала 6 для определения угла наклона восходящей части трубопровода. Для изменения угла наклона восходящей части, а также фиксации труб на основании стенда изготовлено прижимное устройство 4. Стенд был подвешен с помощью петель 1.

Внешний вид экспериментальной установки для изучения выноса скоплений жидкости из пониженных участков трубопровода представлен на рисунке 3.
Рисунок 2. Поворотное устройство:
1 – петли крепления; 2 – основание стенда; 3 – основание для трубы;
4 – прижимной винт; 5 – участок газопровода; 6 – шкала угла наклона газопровода

Рисунок 3. Внешний вид экспериментальной установки
С целью уменьшения числа экспериментов без потери качества получаемых данных и охвата большого диапазона изменения параметров было произведено рациональное планирование экспериментов. Для этого было выбрано 4 главных фактора – расход газа, диаметр трубопровода, угол наклона восходящей части трубопровода и объем скопления жидкости. Влиянием остальных факторов в данном случае можно пренебречь, поскольку на данном этапе важно выделить те факторы, которые играют в течении гидродинамических процессов выноса скопления ключевую роль. При помощи метода Тагучи была получена следующая матрица планирования экспериментов для 4 факторов на 3 уровнях (таблица 2), где 1-3 – уровни действующих факторов.

Таблица 2. Матрица планирования экспериментов на опытной установке

<table>
<thead>
<tr>
<th>Расход газа</th>
<th>Диаметр трубопровода</th>
<th>Угол наклона восходящей части трубопровода</th>
<th>Объем скопления жидкости</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Методика проведения экспериментов была следующей. В стенде, с помощью хомутов, закреплялся выбранный светопрозрачный участок трубы. С помощью менируки отмерялся необходимый для эксперимента объём жидкости. Для создания более контрастной среды, удобной для визуального наблюдения процесса выноса, жидкость подкрашивалась индикатором CoSO₄. Заполнение модели газопровода производилось с помощью воронки, подсоединяющей к быстроразъёмному соединению на входе в исследуемый участок.
Затем стенд подключался к линии высокого давления. С помощью регуляторов редуктора выставлялось заданное давление на входе. Расход газа контролировался с помощью ротаметра. Эксперимент продолжался до полного выноса скопления.

Данный эксперимент повторялся с изменением объёма скопления и угла наклона восходящей части. После этого производилась смена трубопровода на участок другого диаметра и проводилась следующая серия экспериментов.

Результаты проведенных экспериментов представлены в таблице 3.

Таблица 3. Экспериментальные данные по выносу скоплений жидкости газом

<table>
<thead>
<tr>
<th>Объем скопления, мл</th>
<th>Диаметр, мм</th>
<th>Угол наклона трубопровода, град</th>
<th>Расход газа, л/мин</th>
<th>Время полного выноса скопления, с</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>24</td>
<td>5</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>36</td>
<td>15</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>25</td>
<td>200</td>
<td>вынос не происходит</td>
</tr>
<tr>
<td>40</td>
<td>24</td>
<td>15</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>25</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>5</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>25</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>36</td>
<td>5</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>15</td>
<td>400</td>
<td>3</td>
</tr>
</tbody>
</table>

Обработка экспериментальных данных позволила найти искомые коэффициенты, в результате чего формула (12) приняла вид

\[
b_{ж} = 0,0004 \cdot Fr^{0,546} We^{-0,156} \cdot (1 + \sin \alpha)^{-2,61}.\]

(13)

Нетрудно видеть, что в ней отсутствуют соотношения вязкостей и плотностей жидкости и газа. Это объясняется тем, что все эксперименты были проведены только для одной пары флюидов: азота и воды. По этой причине полученная формула неприменима для выполнения практических расчетов.
Но такой цели авторы статьи перед собой и не ставили. Дело в том, что, как правило, физический эксперимент в лабораторных условиях не моделирует полностью условия, имеющие место в магистральном газопроводе.

С учетом сказанного, в основу получения пригодной для практики расчетной зависимости для вычисления $\beta_\alpha$ был положен метод математического моделирования в программе *ComsolMultiphysics*.

**Моделирование выноса скоплений жидкости на ЭВМ.** На первом этапе была создана математическая модель экспериментальной установки, моделирование проводилось при физических параметрах соответствующих натурным экспериментам.

Конечно-элементное моделирование данной задачи многофазной гидродинамики основано на решении системы уравнений Навье-Стокса, с использованием k-ε модели турбулентности. Наличие двух фаз и изменения границы их раздела учтены при помощи метода функции уровня (*LevelSetMethod*). Устойчивость полученных решений достигнута использованием специальных искусственных методов - *stabilizationmethods* (что особенно важно при сложных, меняющихся во времени, турбулентных процессах).

Пространственная геометрия модели получена в результате сближения двух одинаковых цилиндрических элементов, расположенных под углом друг к другу. В модель также был добавлен уровень скопления жидкости, и определены его границы. При этом все размеры и геометрические соотношения полностью соответствуют таковым в экспериментальной установке.

Поскольку полная пространственная модель (рисунок 4) имеет плоскость симметрии, то для сокращения времени вычислений, а также для более наглядного представления результатов, модель была рассечена по этой плоскости и дальнейшие исследования происходящих процессов рассматривались в ней (рисунок 5). Такой подход не искажил полной
картины происходящего, верно качественно и количественно описывал процесс выноса скопления жидкости.

Рисунок 4. Моделирование выноса скопления в формате 3D

После того как геометрия модели была определена, были выбраны материалы (materials), свойства которых были заданы в качестве функций давления и температуры.

В качестве флюида 1 был выбран азот, в качестве флюида 2 была выбрана вода. Также использовалось допущение, что свойства жидкостного скопления являются постоянными и практически не зависят от температуры и давления. Такое допущение было сделано только для верификации данных натурного эксперимента, в случае моделирования на больших трубах (которое будет рассмотрено более подробно ниже) полностью учитывались зависимости физических параметров флюидов от давления и температуры.
После того как материалы и их свойства были заданы, были записаны граничные условия. Для стенок (wall) были записаны особые граничные условия, в которых использовались так называемые логарифмические функции для стенок (logarithmic wall functions). Для входа (inlet) было записано условие постоянного давления, для выхода (outlet) — условие по давлению с учетом потерь в системе, которое автоматически пересчитывается в ходе решения по общим уравнениям баланса.

Поскольку рассматривается процесс, переходной во времени, то необходимо определить начальные условия. Начальные условия были сформулированы с некоторыми допущениями таким образом: движения в скоплении жидкости нет, поверхность скопления жидкости плоская, газ движется над жидкостью с некоторой постоянной скоростью. Для практической стороны решения очень важно правильно «угадать» начальные параметры, поскольку в противном случае процесс выходит за рамки модели, и является неустойчивым, решение не может быть найдено.
Для того чтобы получить эти приблизительные начальные параметры было проделано следующее – при заданной геометрии, свойствах материалов и граничных условиях было найдено решение как для квазистационарного процесса. Полученные параметры решения из него были использованы как начальные условия для момента времени $time = 0$. Такой подход, в частности, предлагается авторами программного пакета в случае сложно предсказуемых задач. В случае простых задач можно использовать начальные параметры, подсчитанные вручную по аналитическим формулам (например, при стационарном ламинарном течении ньютоновской жидкости).

Кроме того, в ряде случаев исследуемый процесс был крайне неустойчивым и получить решение численными методами не удавалось, поскольку в итерационном модуле программы ComsolMultiphysics не достигалась нужна степень сходимости. Это объясняется высокой степенью нелинейности исследуемых явлений, которые крайне чувствительны к многим параметрам. В этой связи алгоритм численного решения требовал крайне тонкой настройки.

Исследуемые процессы - переходные во времени. Несмотря на то, что процессы протекают крайне быстро, они все же не мгновенны, а являются гладкими функциями времени (не дискретными). В то же время, если шаг по времени алгоритма численного решения оказывался больше, чем характерное внутреннее время процесса, то алгоритм выдал ошибку отсутствия сходимости. Это объясняется тем, что алгоритм должен был сопоставить и решить уравнения на шаге времени $\tau$ и $\tau+1$, однако в системе уже произошли значительные изменения, и подобная связь приводила к лишенному смысла результатам. Один из подходов к решению подобного рода затруднений, применённый в работе, описан ниже.

Работу алгоритма поиска решения значительно облегчает "плавный старт", когда исследуемая функция изменения параметра растет не дискретно, скачком, а представляет собой быстро возрастающую гладкую
неразрывную функцию. Особенно важно было учитывать это обстоятельство при задании граничных условий переменных во времени (в нашем случае это будет давление, скорость или расход на входе в исследуемый участок трубопровода). В некоторых случаях граничным условием на входе была принята скорость течения газа в трубе. Ее изменение во времени было задано при помощи сглаженной (smoothing) функции Хевисайда. Сама классическая функция Хевисайда растет скачком как представлено на рисунке 6.

Однако, в программе *ComsolMultiphysics* использовался сглаженный вариант (для моделирования выноса скоплений на трубах большого диаметра). Использование этого варианта несет в себе следующий физический смысл - гидродинамические процессы могут протекать очень быстро, но они неразрывны во времени. Например, открытие крана на баллоне с азотом, выпускает газ в экспериментальную установку, подобный процесс был рассмотрен как мгновенный, однако для точного исследования сложных быстропротекающих гидродинамических процессов такой подход неприемлем и выход был найден в использовании специальных функций для описания переходных процессов.

На рисунке 7 представлена сглаженная функция Хевисайда в условиях конкретной задачи, она является гладкой функцией, и не имеет разрывов во времени. Здесь скорость газа на входе в трубу возрастает от 7 до 10 м/с
за время равное 1 с. Область сглаживания также принята 1 с. Подобный подход позволяет алгоритму численного решения достигнуть необходимой степени сходимости, поскольку исследуемые процессы, во-первых, не несут разрывов/скачков, во-вторых, изменяются относительно плавно и алгоритм успевает адекватно прореагировать на изменения в системе.

Другим важным используемым приёмом было уменьшение шага по времени, с той целью, чтобы алгоритм успевал отследить изменения, протекающие в системе.

Рисунок 7. Сглаженная функция Хевисайда применительно к условиям конкретной задачи

Для того чтобы решить систему дифференциальных уравнений в частных производных при изменяющемся во времени процессе в заданной геометрии, с учетом начальных и граничных условий, а также с учетом свойств материалов, необходимо было задаться соответствующей сеткой.
Разбить геометрию модели на конечное число элементов, в узлах которых будет производиться поиск решения совокупности уравнений на каждом шаге по времени. Форма элементов, их количество, их изменение во времени, существенно влияют на процесс решения и полученные результаты. При моделировании выноса жидкостного скопления из пониженного участка газопровода сетка была задана со следующими особенностями:

1. Сетка формировалась чрезвычайно густой, поскольку моделировался изменяющийся во времени многофазный гидродинамический процесс.

2. Сетка была разделена на три части (рисунок 8):

Тонкий слой у стенок, где были использованы особые «прямоугольные» элементы малого размера.

Выделение этой области необходимо для того, чтобы точнее учесть влияние пограничного слоя и происходящих в нем процессов. Эта особенность связана со спецификой применения логарифмических функций для стенок (Logarithmic wall functions).

- Область, в которой движется газ, была заполнена «треугольной» сеткой, с учетом пункта 1.

- Область скопления жидкости, была заполнена чрезвычайно густой «треугольной» сеткой, которая привязана к ней через границу раздела фаз.

Таким образом, при движении жидкости и при отрыве от нее капель, сетка автоматически перемещалась вместе с ними. Это позволило получить точные решения не только на начальном этапе времени, но и на всем протяжении процесса. Кроме того, это обеспечило устойчивость решения, поскольку система стала более определенной.

Для самого процесса решения был выбран встроенный «решатель», в котором среди прочих настраиваемых параметров, важно обратить внимание на следующее:
• масштаб скорости и давления большой, т.е. эти параметры в относительных величинах менялись незначительно, и нет смысла вычислять их значения особо точно;
• масштаб параметров турбулентности k-ε модели наоборот, принят на несколько порядков меньше, поскольку параметры турбулентности сильно менялись, а их изменения приводили к далеко идущим последствиям для всей модели;
• для увеличения точности решения был уменьшен шаг по времени. В случае большого шага по времени вследствие сложности многофазного гидродинамического процесса можно ожидать иную картину, что в свою очередь грозило неправильными как количественными, так и качественными результатами;
• для уменьшения времени вычислений была использована симметрия, о которой говорилось выше.

Рисунок 8. Сетка (mesh), выбранная в соответствии с физической природой исследуемых процессов
Результаты моделирования. Прежде всего, была проверена адекватность разработанного метода моделирования выноса скоплений жидкости потоком газа. Для этого и были использованы результаты лабораторного физического эксперимента.

Параметры вычислительного эксперимента, результаты моделирования на трубе малого диаметра, а также уравнение, полученное в ходе обработки данных приведены в таблице 4. Для удобства все данные представлены в сравнении с данными экспериментальных исследований.

Таблица 4. Сравнение результатов физического и вычислительного экспериментов

<table>
<thead>
<tr>
<th>Параметры физического эксперимента</th>
<th>Параметры вычислительного эксперимента в среде ComsolMultiphysics 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Геометрия</td>
<td></td>
</tr>
<tr>
<td>Диаметры, мм</td>
<td>24, 36, 40</td>
</tr>
<tr>
<td>Угол наклона восходящей части, град.</td>
<td>5, 15, 25</td>
</tr>
<tr>
<td>Объём скопления, мл</td>
<td>20, 30, 40</td>
</tr>
<tr>
<td>Параметры сред</td>
<td></td>
</tr>
<tr>
<td>Азот газообразный - вода</td>
<td>Азот газообразный - вода</td>
</tr>
<tr>
<td>Время удаления скоплений</td>
<td>2 - 10 с</td>
</tr>
<tr>
<td></td>
<td>1,6 – 9,6 c</td>
</tr>
<tr>
<td>Уравнения относительного расхода жидкости</td>
<td>$\beta_{\infty} = 0,00051 \cdot Fr^{-0,56}We^{-0,151} \cdot (1 + \sin \alpha)^{-2,01}$</td>
</tr>
<tr>
<td></td>
<td>$\beta_{\infty} = 0,0004 \cdot Fr^{-0,54}We^{-0,156} \cdot (1 + \sin \alpha)^{-2}$</td>
</tr>
</tbody>
</table>

Из таблицы видно, что при одинаковых геометрических параметрах установки и физических параметров сред время выноса скоплений отличается незначительно. Различие во времени выноса сопоставимо с погрешностями. Коэффициенты $A_0$-$A_3$, полученные в ходе анализа экспериментальных данных модели, близки к коэффициентам, полученным при обработке данных с экспериментальной установки.

Убедившись в адекватности созданной модели выноса жидкостных скоплений на трубах малого диаметра, на следующем этапе исследований с ее помощью выполнили моделирование выноса жидкостных скоплений
из труб большого диаметра. При этом сначала были определены пределы изменения величин, входящих в уравнение (12) и проведено рациональное планирование эксперимента на основании робастных планов Тагучи. В результате обработки данных, полученных в ходе вычислительного эксперимента, уравнение относительного расхода жидкости, выносимой из магистральных газопроводов потоком транспортируемого газа, приобрело следующий вид:

$$\beta_{\infty} = 114.13 \left( \frac{\mu_r}{\mu_c} \right)^{0.0168} \left( \frac{\rho_r}{\rho_c} \right)^{-0.9} \cdot Fr^{1.298} \cdot We^{-0.945} \cdot (1 + \sin \alpha)^{0.616}$$  \hspace{1cm} (14)$$

Качество полученного уравнения было проверено при помощи стандартных методов математической статистики и признано удовлетворительным.

**Выводы**

1. Получена расчетная зависимость, пригодная для количественной оценки динамики размыва жидкостных скоплений в магистральных газопроводах.

2. Разработана методология описания реальных процессов в магистральных трубопроводах на основе результатов лабораторных экспериментов на моделях.

**References**


4 Potapenko E. S. Experimental study of the effect of gas flow rate on liquid accumulation in the lower section of the pipeline // Gas industry. 2012. No. 9. P. 44 - 47. [in Russian].


Список используемых источников


4 Потапенко Е.С. Экспериментальные исследования влияния скорости потока газа на жидкостное скопление в пониженном участке трубопровода // Газовая промышленность. 2012. №9. С.44 – 47.


About the authors

Сведения об авторах

Коршак А.А., д-р техн. наук, технический директор ООО «НПЦ „Знание”, г. Уфа, Российская Федерация

A.A. Korshak, Doctor of Engineering Sciences, Technical Director Ltd. “SPC “Knowledge”, Ufa, the Russian Federation

e-mail: korshak-spb@mail.ru

Усольцев М.Е., канд. техн. наук, инженер проектно-сметного бюро ООО «Транснефть – Балтика», г. Санкт-Петербург, Российская Федерация

M.E. Usoltsev, Candidate of Engineering Sciences, Engineer of Planning and Budget Bureau Ltd. “Transneft-Baltika”, St.- Petersburg, the Russian Federation

Пшенин В.В., канд. техн. наук, ведущий инженер по проектированию линейной части магистральных трубопроводов ЗАО «КТПИ "Газпроект», г. Санкт-Петербург, Российская Федерация

V.V. Pshenin, Candidate of Engineering Sciences, Lead Engineer for the Design of the Linear Part of Trunk Pipelines ZAO CTPI “Gasproject”, St.- Peterburg, the Russian Federation