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Abstract. In we put forward an approximate mathematical model of flexural-

rotary vibrational movements in a twin pipeline bent by gravity. The model was 

developed in an assumption of low pillar elasticity and pipe deformations associated 

with the pipe leave out of the flexure plane and takes account for the Archimedes 

buoyancy force, Coriolis inertia forces and drag forces proportional to the first-rate 

velocity. We gave formulas describing natural frequencies of pipeline flexural- rotary 

vibrations and determined the effects of the Archimedes force, Coriolis inertia forces, 

drag forces and also geometrical and physical mechanical parameters of the pipe on its 

natural vibrations. 

Keywords: spatial parametric vibrations, pipeline, alternating internal pressure, 

static pressure, initial phase, amplitude, circular frequency of pressure alterations. 

 

 

The present paper being a continuation of the work begun in [1] is devoted to 

solving the problem on spatial flexural- rotary vibrations of a pipeline under the action 

of alternating internal pressure. Special attention is paid to research on the effects of 

values of static and dynamic components, circular frequency and initial phase of 

pressure in a liquid, Archimedes buoyancy force, Coriolis inertia forces and drag forces 

on flexural and t rotary vibrational movements of the pipeline. 

A calculation scheme for flexural and rotary vibrations produced in a pipeline is 

given in Figure 1. The left side of Figure 1 shows a pipe portion of length dx and mass 

m
dm= dx

L
, and the right side of the same figure demonstrates accelerations and forces 

acting on the selected pipe portion. The length of the pipe is L, the thickness of its wall 

is h, and the total mass of the homogeneous pipe and liquid is m. 
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Figure 1. Calculation scheme for flexural and rotary vibrations of the pipeline 

 

The load qn distributed along the pipeline is expressed by the formula [2]: 
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where w is the deflection of the pipe portion, W, j, P0 and Pa are the circular 

frequency, the initial phase, the value of the static component value and the amplitude 

of the dynamic component of the alternating internal pressure Pi in the pipe, Ri, Fi are 

the internal radius and the area of the pipe flow section, t is the time.     

The equation of the conditional equilibrium in the pipe as a sum of moments of 

all the applied forces and inertia forces about the axis Dx has the form 
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where ɗ is the angle of rotation in the pipe as a rigid body about the axis Dx, 

2ɟ ˊ( )os idA R h gdx= +
 

is the Archimedes buoyancy force, 
2

2

ɗd
d dmw

dt
F =t , 

ɗ
2k

d w
d dm

dt t

µ
F =

µ  
are the tangential and Coriolis inertia forces of the pipe portion, osr  

is the density of the continuous medium around the pipe, g is the gravitational 

acceleration, ɗeM c= Ö is the total moment of the elastic forces in the pillars, c is the 

elasticity coefficient of the pillars, ɛ is the drag coefficient depending on the 

continuous medium viscosity and the immersed body shape [3].  

The differential equation of the pipeôs flexural vibrations in its own plane is as 

follows 
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ñ  is the longitudinal tension force, E, 2ˊ= iF R h and 

3@́ iJ R h is the Youngôs modulus of the material, the cross sectional area and its axial 

moment of inertia in the pipeline, 
1 ,

A
g g

m
= -  2ɟ ˊ( )= +os iA R h Lg is the Archimedes 

force expelling the whole pipe. 

The function of the pipeôs deflection that satisfies the boundary conditions 
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where W0 and w0(t)are the amplitudes of the deflection static and dynamic components.  

Inserting the functions (1) and (4) into the equations (2) and (3) and applying the 

Bubnov-Galerkin method [4] to the latter one, we obtain the following set of differential 

equations 
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The work [1] gives also an algebraic equation to determine the static component 

0W  of the deflection in the pipe 
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that makes it possible to find an approximate critical magnitude for the static pressure  
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The set of equations (5) is solved under the initial conditions 

0=0, ɗ=ɗ ,t   
0

ɗ
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d

dt
=    0 0,w =  0 0.

dw

dt
=                                                         (8) 

Here, 0ɗ, 0ɤ  are the initial angle of rotation and the angular velocity of the pipe.  

Let us consider the effect of the static component value and the dynamic 

component amplitude, the circular frequency and the initial pressure phase in liquid, the 

Archimedes buoyancy force, the Coriolis inertia forces and the drag forces acting on 

flexural and rotary vibration movements of the pipeline.  

Here, as in the work [1], the numerical solution to the Cauchy problem (5), (8) 

was determined by the Runge-Kutta method. The calculation results for the following 

main parameter magnitudes: m = 6,141Ͻρπ3 kg, L = 25 m, c = 0, g = 9,8 m/s
2
, Ri = 0,259 

m, h = 0,006 m, E = 2,0Ͻ1011 Pa, 0ɗ= 0,3 rad 0ɤ= 0 rad/s are given in the form of 

diagrams. Figures 2-33 give the diagrams of time-dependencies of the angle of rotation 

ɗ  and the dynamic deflection w0(t) in the middle point of the pipe span, respectively. In 

the diagrams, the solid lines depict the calculation results with account for drag forces 

whereas the dashed lines show the results with no account for these forces. The 

calculations were made for two sets of values for the drag coefficient ɛ and the 

continuum density ɟos: ɛ =24 PaϽs and ɟos=800 kg/m
3
 (aqueous medium),  ɛ=0,021 

PaϽs and ɟos=1,25 kg/m
3
 (air medium). The diagrams given in Figures 2-17 and 18-33 

illustrate the calculation results for the two above noted sets of values for the drag 

coefficient and the continuum density, respectively. 

The effect of the value P0 for the internal pressure static component in the 

pipeline on the its flexural and rotary vibration movements is demonstrated in Figures 

2-7, 18-23 and 8-12, 15-17, 24-29, 32, 33. The calculations were made for two values of 

the pressure static component: P0=1,0 MPa (Figures 2-7, 18-23) and P0= 5,08 MPa 

(Figures 8-17, 24-33). In this case the value Pa 
 for the pressure wave dynamic 

component had two magnitudes: Pa= 0,01 MPa, Pa=0,05 MPa, and the circular 

frequency W and the initial phase j  had three magnitudes: W=2,8 rad/s, W=6,8 

rad/s, W=10,8 rad/s and j=0 rad, ˊ/2j=  rad, ˊj= rad. By comparing the 

corresponding diagrams in these figures, we can see that an increase in the amplitude of 

flexural vibrations and a decrease in the frequency of rotary vibrations occur 

simultaneously with the growing internal pressure static component at the similar 

parameter magnitudes. Besides, it can be noted that the greatest changes in the pipe 

flexural and rotary vibration amplitudes at the same static pressure P0 are due to 

changing magnitudes of the circular frequency W. As seen from all these diagrams, if 

the pipe vibrations occur in aqueous medium when ɛ =24 PaϽs and ɟos= 800 kg/m
3
 the 

amplitudes of flexural and rotary vibrations with and without account for drag differ to 

a large extent (Figures 2-17). If the pipe produces vibrations in the air medium when  ɛ 
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=0.021 PaϽs and ɟos=1.25 kg/m
3
, we can see a coincidence of calculation results with 

and without account for drag forces (Figures 18-33). In the latter case we can also 

observe a pronounced increase in the frequencies of both rotary and flexural vibrations 

in the pipe. 

In order to conclude about the effect exerted by changing amplitude Pa 
of the 

internal pressure dynamic component in the pipe on the latterôs flexural and rotary 

vibrations, we should compare the corresponding diagrams, e.g., in Figures 9 and 12 

(aqueous medium, P0 = 5,08 MPa, W= 6,8 rad/s, j= 0 rad), 26 and 29 (air medium, P0 

= 5,08 MPa, W=10,8 rad/s, j= 0 rad). In Figures 9 and 26, the diagrams are 

constructed for Pa= 0,01 MPa, and in Figures 12 and 29 for Pa= 0,05 MPa. As can be 

seen, if the pipe moves in aqueous medium with growing amplitude Pa 
of the internal 

pressure dynamic component, it is accompanied by a considerable increase in the 

amplitude of flexural vibrations and a less pronounced increase in the amplitude of 

rotary vibrations. If the pipe moves in air medium, an increase in the amplitude Pa 
of 

the internal pressure dynamic component leads to an increase in the amplitudes of both 

flexural and rotary vibrations. In the latter case we can also note a decrease in the 

frequencies of rotary and flexural beatings.     

For P0 = 5,08 MPa
  

and Pa= 0,05 MPa, similar diagrams are constructed in 

Figures 13, 14 (ɛ= 24 PaϽs, ɟos= 800 kg/m
3
, W= 6,8 rad/s) and 30, 31 (ɛ= 0,021 PaϽs, 

ɟos=1,25 kg/m
3
,  W=10,8 rad/s) with no account for the Archimedes buoyancy force 

(Figures 13 and 30) and the Coriolis inertia forces (Figures 14 and 31). If we compare 

the corresponding diagrams in Figures 12 and 13, 14, and also 29, 30 and 31, we can 

state the following. 

If no account is taken for the Archimedes buoyancy force, a considerable 

increase in the frequencies and a decrease in the amplitudes occur simultaneously when 

the pipe moves in aqueous medium. In this case we can also note a considerable 

increase in the frequency of flexural beatings. In the case when the pipe moves in air 

medium, its frequencies and amplitudes of rotary and flexural vibrations change 

inconsiderably. 

If no account is taken for the Coriolis inertia forces, both frequencies and 

amplitudes of rotary and flexural vibrations increase inconsiderably when the pipe 

moves in aqueous medium. In this case flexural vibrations with the highest amplitude 

continue over a shorter period of time. There is also a slight increase in the frequency of 

flexural beatings. In the case that the pipe moves in air medium, its frequencies and 

amplitudes of rotary and flexural beatings decrease to a large extent.  

The effect of changing the internal pressure initial phase j on vibration 

movements in the pipe is illustrated by the diagrams in Figures 12, 16, 17 (aqueous 

medium, W= 6,8 rad/s) and 29, 32, 33 (air medium, W=10,8 rad/s) constructed for 

static pressure P0 = 5,08 MPa. Changes that occur in the amplitudes of rotary and 

flexural vibrations are inconsiderable for aqueous and air media, along which the pipe 
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executes its movements. A slight increase can be noted in the frequency of flexural 

beatings in the pipe occurring with the growing magnitude of the initial phase.  
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Figure 2. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point  

of the pipe span on the time t at P0=1,0 MPa, Pa= 0,01 MPa,  

ɛ= 24 PaϽs, ɟos= 800 kg/m
3
, W= 2,8 rad/s, j= 0 rad. 
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Figure 3. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point  

of the pipe span on the time t at P0=1,0 MPa, Pa = 0,01 MPa,  

ɛ= 24 PaϽs, ɟos=800 kg/m
3
, W=6,8 rad/s, j=0 rad. 
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Figure 4. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point  

of the pipe span on the time t at P0=1,0 MPa, Pa= 0,01 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W=10,8 rad/s, j= 0 rad. 
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Figure 5. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point 

 of the pipe span on the time t at P0=1,0 MPa, Pa= 0,05 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W=2,8 rad/s, j=0 rad. 
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Figure 6. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point 

 of the pipe span on the time t at P0=1,0 MPa, Pa= 0,05 MPa,  

ɛ=24 PaϽs, ɟos= 800 kg/m
3
, W=6,8 rad/s, j=0 rad. 
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Figure 7. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point  

of the pipe span on the time t at P0=1,0 MPa, Pa=0,05 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W=10,8 rad/s, j=0 rad. 
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Figure 8. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point  

of the pipe span on the time t at P0 = 5,08 MPa, Pa= 0,01 MPa,  

ɛ= 24 PaϽs, ɟos= 800 kg/m
3
, W=2,8 rad/s, j= 0 rad. 
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Figure 9. Dependencies of the angle of rotation ɗ and deflection w0 of the middle point  

of the pipe span on the time t at P0= 5,08 MPa, Pa=0,01 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W=6,8 rad/s, j=0 rad. 
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Figure 10. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0 = 5,08 MPa, Pa= 0,01 MPa,  

ɛ= 24 PaϽs, ɟos= 800 kg/m
3
, W=10,8 rad/s, j= 0 rad. 
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Figure 11. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0= 5,08 MPa, Pa= 0,05 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W=2,8 rad/s, j= 0 rad. 
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Figure 12. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0 = 5,08 MPa, Pa= 0,05 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W=6,8 rad/s, j=0 rad. 



624 

É Electronic scientific journal ñOil and Gas Businessò, 2013, ˉ 1 http://www.ogbus.ru 

0 10 20
0.4-

0.2-

0

0.2

0.4

time t,s

a
n

g
le

, 
ra

d

 

0 10 20

0.02-

0

0.02

time t, s

d
e
fle

ct
io

n
 w

. 
m

 

Figure 13. Dependencies of the angle of rotation ɗ and deflection w0 of the middle  

point of the pipe span on the time t at P0 = 5,08 MPa, Pa= 0,05 MPa,ɛ=24 PaϽs, ɟos

=800 kg/m
3
, W= 6,8 rad/s, j= 0 rad. The Archimedes buoyancy force is not taken into 

account. 
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Figure 14. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0 = 5,08 MPa, Pa= 0,05 MPa, ɛ= 24 PaϽs, ɟos

=800 kg/m
3
, W= 6,8 rad/s, j=0 rad. The Coriolis inertia forces are not taken into 

account. 
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Figure 15. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0 = 5,08 MPa, Pa= 0,05 MPa,  

ɛ=  24 PaϽs, ɟos= 800 kg/m
3
, W=10,8 rad/s, j= 0 rad. 
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Figure 16. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point  of the pipe span on the time t at P0= 5,08 MPa, Pa= 0,05 MPa,  

ɛ=24 PaϽs, ɟos=800 kg/m
3
, W= 6,8 rad/s, ˊ/2j=  rad. 
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Figure 17. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0= 5,08 MPa, Pa= 0,05 MPa,  

ɛ=24 PaϽs, ɟos= 800 kg/m
3
, W= 6,8 rad/s, ˊj= rad. 



629 

É Electronic scientific journal ñOil and Gas Businessò, 2013, ˉ 1 http://www.ogbus.ru 

0 10 20
0.4-

0.2-

0

0.2

0.4

time t,s

a
n

g
le

, 
ra

d

 

0 10 20
0.01-

0

0.01

time t, s

d
e
fle

ct
io

n
 w

. 
m

 

Figure 18. Dependencies of the angle of rotation ɗ and deflection w0 of the middle 

point of the pipe span on the time t at P0=1,0 MPa, Pa= 0,01 MPa,  

ɛ= 0,021 PaϽs, ɟos=1,25 kg/m
3
, W=2,8 rad/s, j= 0 rad. 




