NEW INFLOW PERFORMANCE RELATIONSHIP
FOR SOLUTION-GAS DRIVE OIL RESERVOIRS

K.A. Fattah¹*, Mohamed Elias², H. Ahmed El-Banbi³, El-Sayed A. El-Tayeb³
¹ King Saud University, Faculty of Engineering, Petroleum and Natural Gas Department
Riyadh, Kingdom of Saudi Arabia, * e-mail: kelshreef@ksu.edu.sa
² Weatherford, Mina Abdullah, Kuwait
e-mail: mohamed.elyas@me.weatherford.com
³ Cairo University, Faculty of Eng., Petroleum Department, Giza, Egypt

Abstract. The Inflow Performance Relationship (IPR) describes the behavior of the
well’s flowing pressure and production rate, which is an important tool in understanding the
reservoir/well behavior and quantifying the production rate. The IPR is often required for
designing well completion, optimizing well production, nodal analysis calculations, and designing
artificial lift. Different IPR correlations exist today in the petroleum industry with the most
commonly used models are that of Vogel’s and Fetkovitch’s. In addition to few analytical cor-
relations, that usually suffers from limited applicability.

In this work, a new model to predict the IPR curve was developed, using a new correla-
tion that accurately describes the behavior the oil mobility as a function of the average reser-
voir pressure. This new correlation was obtained using 47 actual field cases in addition to sev-
eral simulated tests.

After the development of the new model, its validity was tested by comparing its accur-
cy with that of the most common IPR models such as Vogel, Fetkovich, Wiggins, and Sukarno
models. Twelve field cases were used for this comparison. The results of this comparison
showed that: the new developed model gave the best accuracy with an average absolute error
of 6.6 %, while the other common models are ranked, according to their accuracy in the follow-
ing order to be Fetkovich, Sukarno, Vogel, and Wiggins, with average absolute errors of 7 %,
12.1 %, 13.7 %, and 15.7 respectively.

The new developed IPR model is simple in application, covers wide range of reservoir
parameters, and requires only one test point. Therefore, it provides a considerable advantage
compared to the multipoint test method of Fetkovich. Moreover, due to its accuracy and simpli-
city, the new IPR provides a considerable advantage compared to the widely used method of
Vogel.

Finally, the application of the new model is illustrated with field examples for current
and future IPR computations.

Keywords: Inflow Performance Relationship, oil mobility, solution- gas drive oil reser-
voir, empirically IPR correlations, analytically IPR correlations

Introduction

For slightly compressible fluids, the productivity index is given by:

\[J = \frac{0.00708 \cdot kh}{\ln\left(\frac{r_e}{r_w}\right) - 0.75 + S} \left(\frac{k_m}{\mu_o B_o} \right). \]
Therefore, the variables that affecting the productivity index and in turn the inflow performance are the pressure dependent parameters (µ_o, B_o, and k_ro). Fig. 1 schematically illustrates the behavior of those variables as a function of average reservoir pressure (p_r). Above the bubble-point pressure (p_b), k_ro equals unity and the term (k_ro/µ_o B_o) is almost constant. As the pressure declines below p_b, the gas is released from solution which can cause a large decrease in both k_ro and (k_ro/µ_o B_o).

![Diagram](image)

Fig. 1. Effect of p_r on B_o, µ_o, and k_ro (After Ahmed, T.)

Assuming that the well’s productivity index (PI) is constant, the oil flow rate can be calculated as:

\[q_o = J (p_r - p_{wf}) \]

(2)

Eq. 2 suggests that the inflow into a well is directly proportional to the pressure drawdown (Δp). Evinger and Muskat (1949) observed that as the pressure drops below p_b, the inflow performance curves deviates from the simple straight-line relationship as shown in Fig. 2. Therefore, the above relationship is not valid for two-phase flow or in case of solution gas drives reservoirs.

![Diagram](image)

Fig. 2. The inflow performance curve below the bubble-point pressure (After Ahmed, T.)
Many IPR correlations addressed the curvature in Fig. 2 of the inflow performance curves in case of solution gas drive oil reservoirs in which p_r is the initial reservoir pressure. Based on the literature survey, the most known IPR correlations can be subdivided into empirically and analytically derived correlations. Some of the most known empirical correlations are Vogel (1968), Fetkovich (1973), Kilns and Majcher (1992), Wiggins (1993), and Sukarno et al. (1995). Some of the most known analytical correlations are Wiggins et al. (1991, 1992), and Del Castillo, et al. (2003).

The empirical derived correlations

Vogel's method

Vogel (1968) used a computer program based on Weller’s (1966) assumptions and twenty-one reservoir data sets to develop an IPR as:

$$\frac{q_o}{q_{o,\text{max}}} = 1 - 0.2 \left[\frac{p_{wf}}{p_r} \right] - 0.8 \left[\frac{p_{wf}}{p_r} \right]^2 .$$

Vogel’s correlation gave a good match with the actual well inflow performance at early stages of production but deviates at later stages of the reservoir life. Therefore, this will affect the prediction of inflow performance curves in case of solution gas drive reservoirs, because at later stages of production the amount of the free gas that comes out of the oil will be greater than the amount at the early stages of production.

Fetkovich's method

Fetkovich (1973) developed an IPR based on multi-rate tests “40 different oil wells from six fields” and the general treatment of the inflow performance provided by Raghavan (1993) under pseudo-steady state conditions. Eq. 4 gives the oil flow rate as introduced by Raghavan (1993):

$$q_o = \bar{J} \int_{p_w}^{p_r} \frac{k_{ro}(S_o)}{\mu_o B_o} dp ,$$

where \bar{J} is defined by:

$$\bar{J} = \frac{kh}{1.142 \ln(r_e/r_w) - 0.75 + S} .$$

Eq. 4 is not useful in a practical sense, therefore, Fetkovich proposed the following relationship between the oil mobility function and p_r:

$$\frac{k_{ro}(S_o)}{\mu_o B_o} = x \cdot p_r ,$$

where x is constant. Finally, the "Fetkovich form" of the IPR equation is given as the "backpressure" modification form, which is written as:
\[
\frac{q_o}{q_{o,\text{max}}} = \left[1 - \frac{p_{wf}^2}{p_r^2} \right]^n.
\] (7)

Eq. 7 requires a multi-rate test to determine the value of \(n \). As indicated, the main parameter that affect on the Fetkovich's model is the oil mobility as a function of \(p_r \), which assumed to be linear relationship as illustrated in Fig. 3.

Fig. 3. Mobility-pressure behavior for a solution gas drive reservoir (After Fetkovich\(^4\))

Klins and Majcher's method

Based on Vogel’s work, Klins and Majcher (1992) developed the following IPR that takes into account the change in bubble-point pressure and reservoir pressure.

\[
\frac{q_o}{q_{o,\text{max}}} \bigg|_{\delta=0} = 1 - 0.295 \left(\frac{p_{wf}}{p_r} \right)^{0.705} \left(\frac{p_{wf}}{p_r} \right)^N_1,
\] (8)

where \(N_1 = 0.28 + 0.72 \left(\frac{p_r}{p_b} \right) \cdot (1.235 + 0.001 p_b) \). (9)

Wiggins's method

Wiggins (1993) developed the following generalized empirical three phase IPR similar to Vogel’s correlation based on his developed analytical model in 1991:

\[
\frac{q_o}{q_{o,\text{max}}} = 1 - 0.519167 \left(\frac{p_{wf}}{p_r} \right)^{-0.481092} \left(\frac{p_{wf}}{p_r} \right)^2.
\] (10)

Sukarno and Wisnogroho's method

Sukarno and Wisnogroho (1995) developed an IPR (Eq. 11) based on simulation results that attempts to account for the flow-efficiency variation caused by rate-dependent skin:

\[
\frac{q_o}{q_{o,\text{max}}} \bigg|_{\delta=0} = FE \left[1 - 0.1489 \left(\frac{p_{wf}}{p_r} \right)^{-0.4416} \left(\frac{p_{wf}}{p_r} \right)^2 - 0.4093 \left(\frac{p_{wf}}{p_r} \right)^3 \right],
\] (11)
where:

$$FE = a_0 + a_1 \left(\frac{p_{wf}}{p_r} \right) + a_2 \left(\frac{p_{wf}}{p_r} \right)^2 + a_3 \left(\frac{p_{wf}}{p_r} \right)^3; \quad (12)$$

$$a_i = b_{oi} + b_{1i} S + b_{2i} S^2 + b_{3i} S^3. \quad (13)$$

In Eq. 13, a_i, b_{oi}, b_{1i}, b_{2i}, and b_{3i} are the fitting coefficients.

The analytical derived correlations

Wiggins’s method

Wiggins (1991) and Wiggins, et al. (1992) studied the three-phase (oil, water, and gas) inflow performance for oil wells in a homogeneous, bounded reservoir. They started from the basic principle of mass balance with the pseudo-steady state solution to develop the following analytically IPR:

$$\frac{q_o}{q_{o,\max}} = 1 + \frac{C_1}{D} \left(\frac{p_{wf}}{p_r} \right) + \frac{C_2}{D} \left(\frac{p_{wf}}{p_r} \right)^2 + \frac{C_3}{D} \left(\frac{p_{wf}}{p_r} \right)^3 + \frac{C_4}{D} \left(\frac{p_{wf}}{p_r} \right)^4. \quad (14)$$

Where, C_1, C_2, C_3, ..., C_n, and D coefficients are determined based on the oil mobility function and its derivatives taken at p_r.

Wiggins, et al. (1991, 1992) found that the main reservoir parameter that plays a major role in the inflow performance curve is the oil mobility function. The major problem in applying this IPR is its requirement for the mobility derivatives as a function of p_r, which is very difficult in practice. Therefore, in 1993 Wiggins developed an empirical IPR (i.e., Eq.10) from this analytical IPR model by assuming a third degree polynomial relationship between the oil mobility function and p_r. Wiggins, et al. also presented plots of the oil mobility as a function of p_r taken at various flow rates. An example of the oil mobility-pressure profile that is presented by Wiggins (1991) is shown in Fig. 4.

![Fig. 4. The oil mobility profiles as a function of pressure - various flow rates (Case 2, after Wiggins, et al.8)](http://www.ogbus.ru/eng/)
Del Castillo's method

Del Castillo (2003), Del Castillo et al. (2003) developed theoretical attempt to relate the IPR with the fundamental flow theories. In this model, a second-degree polynomial IPR is obtained with a variable coefficient (v), or the oil IPR parameter that in fact be a strong function of pressure and saturation. The starting point for this development is the pseudo-pressure formulation for the oil phase, which is given as:

$$p_{p_r}(p) = \left[\frac{\mu_o B_o}{k_{ro}}\right]_{p_e}^{p} \cdot \int_{p_{min}}^{p} \frac{k_{ro}}{\mu_o B_o} dp .$$

(15)

In that work, the authors presumed that the oil mobility function has a linear relationship with the average reservoir pressure as given below:

$$\frac{k_{ro}}{\mu_o B_o} |_{p_r} = f(p_r) = e + 2d \cdot p_r .$$

(16)

Where e, and d are constants established from the presumed behavior of the oil mobility profile. Fig. 3 refers to the physical interpretation of Eq. 16. Substituting with Eq. 16 in Eq. 15 and manipulating, the following equation could be presented:

$$\frac{q_o}{q_{o,\max}} = 1 - v \left[\frac{p_{wf}}{p_r}\right] - (1 - v) \left[\frac{p_{wf}}{p_r}\right]^2 .$$

(17)

Specifically, the v-parameter is given as:

$$v = \frac{1}{\left[1 + \frac{d}{e} \cdot p_r\right]} .$$

(18)

Wiggins (1991) and Del Castillo (2003) relationships can only be applied indirectly or inferred, by estimating the oil mobility as a function of p_r to construct the IPR curve.

Summary of literature survey

As indicated, the empirical IPRs suffer from the limitation of their application range as they depend on the data used in their generation, and lack of accuracy. In addition, they aren’t explicitly functioning of reservoir rock and fluid data, which are different from one reservoir to another. On the other hand, the analytical IPRs suffer from their difficulty to be applied due to its requirement to the oil mobility profiles with its derivatives, and the assumptions used in their development. As discussed, the main parameter that affects PI and in turns the IPR curves is the oil mobility as a function of p_r. Therefore, the relationship between the oil mobility and p_r should be accurately determined. In addition, the most common equation that represents a basic start point for the development of any IPR in case of solution gas drive reservoirs is Eq. 15, which mainly a function of the oil mobility ($k_{ro}/\mu_o B_o$).

Most of the empirical IPRs did not take into their consideration the whole effect of the oil mobility function, this in turn largely reduce the accuracy and utility of these
IPRs. Even though the models that considered this effect, such as the models of Fetkovich (1973) and Wiggins (1993), assumed the relationships between this function and \(pr \), as a linear form and a third polynomial form for Fetkovich and Wiggins, respectively. In fact, these linear and polynomial forms don’t accurately describe the behavior of the oil mobility as a function of \(pr \) with an accurate manner. On the other hand, some of analytical IPRs didn’t considered the effect of oil mobility, except the models of Wiggins, et al. (1991, 1992) Del Castillo, et al. (2003). Wiggins’s model is so complicated because it requires the oil mobility represented in its derivates as a function of \(pr \), this is greatly difficult in application. Del Castillo’s model is not accurate; this is because Del Castillo assumed a liner relationship between the oil mobility function and \(pr \), which in turn reduce the accuracy of this model.

Another parameter should be considered in the selecting of the IPR method, is the aspect of conducting the flow tests. It is evident that test costs have to be taken into consideration. Finally, the range of applicability will also affect the selecting of the IPRs to predict the well performance.

Accordingly based on the literature survey in this work, it is necessary to:

– Develop a new, more general, simple, and consistent method to correlate inflow performance trends for solution gas drive oil reservoirs. This new method takes into consideration the behavior of the oil mobility function with the average reservoir pressure without the direct knowledge of this behavior.

– Determine the applicability and accuracy of the proposed new model by applying it on different field cases with a comparison with some of the most known and used IPR equations, considering a wide range of fluid, rock, and reservoir characteristics.

– Test some of the available IPR methods on field data.

– Address the prediction of future performance from current test information.

The new developed IPR model

In this work, a single well 3D radial reservoir model using MORE (2006) reservoir simulator was built. The reservoir simulation was used to investigate the shape and in turn the relationship between the oil mobility function and \(pr \). Then, a new IPR was derived based on the resulted oil mobility-pressure profile; this new IPR is mainly a function of the relationship between the oil mobility and \(pr \). Then, forty-seven field cases (published cases) were used to develop an empirical relationship between the oil mobility and \(pr \). Thus, obtaining a new IPR model that is explicitly functioning of the oil mobility that is highly affecting the IPR model.

Mobility-reservoir pressure relationship

Production rate and pressure results from six simulation cases were used to develop the inflow performance curves. Table 1 presents the ranges of reservoir, rock,
and fluid parameters used in the six simulation cases. The saturation and pressure information was also used to develop the mobility function profiles. The general simulation assumptions that were used in building the reservoir model can be summarized as follows:

- 3D radial flow into the well bore;
- the reservoir initially at the bubble point pressure;
- vertical well at the center of the formation;
- the well is completed through the whole formation thickness;
- homogeneous, bounded reservoir;
- isothermal conditions exist;
- no initial O.W.C. exist;
- capillary pressure is neglected;
- interfacial tension effects and non-Darcy flow effects are not considered.

Table 1. Ranges of reservoir parameters – simulation cases

<table>
<thead>
<tr>
<th>Rock/Fluid Property</th>
<th>Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average reservoir pressure, (p_r)</td>
<td>2000 - 5000</td>
<td>psia</td>
</tr>
<tr>
<td>Bubble point pressure, (p_b)</td>
<td>2000 - 5000</td>
<td>psia</td>
</tr>
<tr>
<td>Reservoir temperature, (T)</td>
<td>100 - 300</td>
<td>° F</td>
</tr>
<tr>
<td>Oil specific gravity relative to water, (\gamma_o)</td>
<td>0.7 - 0.85</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Gas specific gravity relative to air, (\gamma_g)</td>
<td>0.5 - 1.2</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Water specific gravity, (\gamma_w)</td>
<td>1.0 - 1.25</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Water viscosity, (\mu_w)</td>
<td>0.1 - 1.0</td>
<td>cp</td>
</tr>
<tr>
<td>Initial solution gas oil ratio, (R_{soi})</td>
<td>0.47 - 2.16</td>
<td>Mcf/STB</td>
</tr>
<tr>
<td>Initial oil formation volume factor, (B_{oi})</td>
<td>1.12 - 2.52</td>
<td>bbl/STB</td>
</tr>
<tr>
<td>Initial oil viscosity, (\mu_{oi})</td>
<td>0.09 - 0.44</td>
<td>cp</td>
</tr>
<tr>
<td>Z-factor</td>
<td>0.7 - 1.042</td>
<td>dimensionless</td>
</tr>
<tr>
<td>(k_{rw} @ (S_{or}))</td>
<td>0.1 - 0.4</td>
<td>fraction</td>
</tr>
<tr>
<td>(k_{ro} @ (S_{wc}))</td>
<td>0.2 - 1.0</td>
<td>fraction</td>
</tr>
<tr>
<td>(k_{rg} @ (1-S_{wc}-S_{or}))</td>
<td>0.3 - 1.0</td>
<td>fraction</td>
</tr>
<tr>
<td>Reservoir radius, (r_e)</td>
<td>100 - 10000</td>
<td>ft</td>
</tr>
<tr>
<td>Formation thickness, (h)</td>
<td>10 - 1000</td>
<td>ft</td>
</tr>
<tr>
<td>Absolute permeability, (k)</td>
<td>0.5 - 500</td>
<td>md</td>
</tr>
</tbody>
</table>

Results of the simulator

Fig. 5 shows the behavior of the mobility as a function of the pressure at different values of the flow rate during the two-phase flow for simulation case No.1 (Case-S1). The other five cases are shown in Fig. 5.1 through Fig. 5.5. The curves are typical of trend in addition to Fig. 5. Therefore, based on the six simulation cases, a reciprocal
relationship between the oil mobility function and the average reservoir pressure was assumed and gives an acceptable and good match with the calculated simulator data as shown in Fig. 6.

Fig. 5. Mobility-pressure behavior for solution gas drive oil reservoir – Case S1

Fig. 5.1. Mobility-pressure behavior for solution gas drive oil reservoir – Case S2

Fig. 5.2. Mobility-pressure behavior for solution gas drive oil reservoir – Case S3
Fig. 5.3. Mobility-pressure behavior for solution gas drive oil reservoir – Case S4

Fig. 5.4. Mobility-pressure behavior for solution gas drive oil reservoir – Case S5

Fig. 5.5. Mobility-pressure behavior for solution gas drive oil reservoir – Case S6
Derivation of the new IPR equation

The starting point for the derivation is the definition of the oil-phase pseudopressure for a single well in a solution gas drive reservoir and the pseudo-steady state flow equation for the oil-phase.

In this work, a new form for the oil mobility function at different values of the average reservoir pressure (i.e., the reciprocal relationship) is obtained from the simulation study that performed on MORE simulators using the six simulation cases. This reciprocal relationship was used as:

\[
\left(\frac{k_{ro}}{\mu_o B_o} \right) p_r = x \cdot p_r + y,
\]

where \(x\) and \(y\) are constants established from the presumed behavior of the mobility profile.

Substituting Eq. 19 in Eq. 15 and manipulating (the details are provided in Appendix A), the following new IPR equation will be introduced:

\[
\frac{q_o}{q_{o, \text{max}}} = 1 - \frac{\ln(\alpha \cdot p_w + 1)}{\ln(\alpha \cdot p_r + 1)},
\]

where: \(\alpha\) is the oil IPR parameter for the new IPR model and on the same time it is represents the two constants \(x\) and \(y\) that shown in Eq. 19 \((\alpha = x/y)\).

Eq. 20 is the proposed new IPR model. As recognized, the \(\alpha\)-parameter is not "constant," therefore; forty-seven field cases (published cases) were used to develop a generalized chart between the \(\alpha\)-parameter and \(p_r\) (i.e. Fig. 7). Table 2 introduces the ranges of data used in the development of these two equations.

Fig. 8 showing the fitting results with the used 47 field cases. As we can see, the fitting line can be divided into two fitting trends to obtain the best accuracy, and we found by trial and error that \(p_r\) threshold is 1600 psi.
Table 2. Ranges of data used in the development α-p_r relationship

<table>
<thead>
<tr>
<th>Properties</th>
<th>Data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fluid properties data:</td>
<td></td>
</tr>
<tr>
<td>Gas specific gravity</td>
<td>0.60 - 0.8</td>
</tr>
<tr>
<td>API gravity of oil</td>
<td>20 - 60</td>
</tr>
<tr>
<td>Water specific gravity</td>
<td>1.04 - 1.074</td>
</tr>
<tr>
<td>Initial oil formation volume factor (bbl/STB)</td>
<td>1.3 - 1.94</td>
</tr>
<tr>
<td>Initial oil viscosity (cp)</td>
<td>0.27 - 0.99</td>
</tr>
<tr>
<td>Initial solution gas oil ratio (Mscf/STB)</td>
<td>0.132 - 4.607</td>
</tr>
<tr>
<td>Bubble point pressure (psia)</td>
<td>Up to 7000</td>
</tr>
<tr>
<td>2. Rock properties data:</td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>0.1 - 0.35</td>
</tr>
<tr>
<td>Absolute permeability (md)</td>
<td>2.5 - 2469</td>
</tr>
<tr>
<td>Irreducible water saturation</td>
<td>0.1 - 0.32</td>
</tr>
<tr>
<td>Residual oil saturation (W/O)</td>
<td>0.08 - 0.17</td>
</tr>
<tr>
<td>Residual oil saturation (G/O)</td>
<td>0.07 - 0.14</td>
</tr>
<tr>
<td>Critical gas saturation</td>
<td>0.02 - 0.17</td>
</tr>
<tr>
<td>Total compressibility (psi⁻¹)</td>
<td>0.33 x 10⁻³ - 30 x 10⁻⁶</td>
</tr>
<tr>
<td>Oil relative permeability @ 0.02 and 0.1 S_{wr}</td>
<td>0.444 - 0.52</td>
</tr>
<tr>
<td>3. Reservoir and well dimension:</td>
<td></td>
</tr>
<tr>
<td>Average reservoir pressure (psia)</td>
<td>Up to 7000</td>
</tr>
<tr>
<td>Drainage area (acres)</td>
<td>20 - 80</td>
</tr>
<tr>
<td>Formation thickness (feet)</td>
<td>10 - 182</td>
</tr>
<tr>
<td>Reservoir radius (feet)</td>
<td>250 - 1053</td>
</tr>
<tr>
<td>Well bore radius (feet)</td>
<td>0.33 - 0.35</td>
</tr>
<tr>
<td>Reservoir temperature (deg. F)</td>
<td>156 - 238</td>
</tr>
</tbody>
</table>
The Average Reservoir Pressure, psia

Based on Fig.7 and Fig. 8, two empirical relationships of the variable coefficient α as function of p_r were developed as:

When p_r-range is less than or equal to 1600 psia the following relationship was developed:

$$\alpha = \frac{1}{a \cdot p_r + b},$$ \hspace{1cm} (21)

where: $a = -0.981$, and $b = -152.585$.

When p_r-range is greater than or equal to 1600 psia the following relationship was developed:

$$\alpha = c + d \cdot p_r + e \cdot p_r^2 + f \cdot p_r^3 + g \cdot p_r^4 + h \cdot p_r^5.$$ \hspace{1cm} (22)

As an important note; if we calculate the variable coefficient α at 1600 psi, it must be the same from Eq. 21 and Eq. 22 which increase the power and utility of the two developed α-empirical relationships. Table 3 shows the constants of Eq. 22.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>-0.0043065</td>
</tr>
<tr>
<td>d</td>
<td>4.98E-06</td>
</tr>
<tr>
<td>e</td>
<td>-2.41E-09</td>
</tr>
<tr>
<td>f</td>
<td>5.69E-13</td>
</tr>
<tr>
<td>g</td>
<td>-6.48E-17</td>
</tr>
<tr>
<td>h</td>
<td>2.85E-21</td>
</tr>
</tbody>
</table>

Table 2 introduces the ranges of data used in the development of Eq. 21 and Eq. 22. Finally, Eq. 20, Eq. 21, and Eq. 22 represent the new developed IPR model.
Methodology to use the new IPR model

Step 1. If p_r is less than or equal to 1600 psia, therefore, the oil IPR parameter (α) is calculated using Eq. 21 as follows:

$$\alpha = \frac{1}{-0.981 \cdot p_r - 152.585}.$$

If p_r is greater than or equal to 1600 psia, therefore, the oil IPR parameter (α) is calculated using Eq. 22 as follows:

$$\alpha = -0.0043065 + 4.98 \times 10^{-6} \cdot p_r - 2.41E-13 \cdot p_r^2 - 6.48E-17 \cdot p_r^3 + 2.85E-21 \cdot p_r^4.$$

Step 2. Calculate $q_{o, \text{max}}$ using Eq. 20 at any given test point:

$$q_{o, \text{max}} = q_o (\text{test}) \left[1 - \frac{\ln (\alpha \cdot p_{wf}(\text{test}) + 1)}{\ln (\alpha \cdot p_r + 1)} \right] \text{STB/day}.$$

Step 3. Assume several values for p_{wf} and calculate the corresponding q_o using Eq. 20:

$$q_o = q_{o, \text{max}} \left[1 - \frac{\ln (\alpha \cdot p_{wf} + 1)}{\ln (\alpha \cdot p_r + 1)} \right] \text{STB/day}.$$

Step 4. For future IPR, calculate α_f using the future value of p_r using Eq. 21 or Eq. 22 according to the value of p_r:

Step 5. Solve for $q_{o, \text{max}}$, at future conditions using Fetkovich’s equation as follows:

$$q_{o, \text{max}} (f) = q_{o, \text{max}} (p) \left[\frac{p_r (f)}{p_r (p)} \right]^{0.0} \text{STB/day}.$$

Step 6. Generate the future inflow performance-curve by applying Eq. 20 as follows:

$$q_o (f) = q_{o, \text{max}} (f) \left[1 - \frac{\ln (\alpha_f \cdot p_{wf} + 1)}{\ln (\alpha_f \cdot p_r (f) + 1)} \right] \text{STB/day}.$$

Validation of the new IPR model

To verify and validate the new developed IPR model, information from 12 field cases were collected and analyzed to get the present inflow performance, and two field cases were collected and used to predict the future IPR curve. The field cases and reservoir data of these cases are included in Table 4. Each field case uses actual field data which representing different producing conditions. In order to test the accuracy and reliability of the new developed IPR model, which is single point method, it will be compared to some of the other two-phase IPR methods currently available in the industry. These methods are those of Vogel (single point method), Fetkovich (multi-point meth-
od), Wiggins (single point method), and Sukarno (single point method) for the present inflow performance. And, Vogel, Fetkovich, Wiggins for the future inflow performance.

Elias (2009) presents the complete details of the comparison analysis while the cases analyzed for present and future performances are summarized in Table 4 and Table 5, respectively.

Table 4. Validation field cases analyzed for the present performance

<table>
<thead>
<tr>
<th>Case</th>
<th>Case Name</th>
<th>Case Type</th>
<th>(p_r), psia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carry City Well</td>
<td>Vertical Well</td>
<td>1600</td>
</tr>
<tr>
<td>2</td>
<td>Well M110-1979</td>
<td>Vertical Well</td>
<td>2320</td>
</tr>
<tr>
<td>3</td>
<td>Well M200</td>
<td>Vertical Well</td>
<td>3263</td>
</tr>
<tr>
<td>4</td>
<td>Case X1B</td>
<td>Horizontal Well</td>
<td>2580</td>
</tr>
<tr>
<td>5</td>
<td>Well 1, Gulf of Suez, Egypt</td>
<td>Vertical Well</td>
<td>2020</td>
</tr>
<tr>
<td>6</td>
<td>Well 3-Field C</td>
<td>Vertical Well</td>
<td>3926</td>
</tr>
<tr>
<td>7</td>
<td>Well 4</td>
<td>Vertical Well, Layered Reservoir</td>
<td>5801</td>
</tr>
<tr>
<td>8</td>
<td>Well E, Keokuk Field</td>
<td>Vertical Well</td>
<td>1710</td>
</tr>
<tr>
<td>9</td>
<td>Well A, Keokuk Field</td>
<td>Vertical Well</td>
<td>1734</td>
</tr>
<tr>
<td>10</td>
<td>Well TMT-27</td>
<td>Vertical Well</td>
<td>868</td>
</tr>
<tr>
<td>11</td>
<td>Well A</td>
<td>Vertical Well</td>
<td>1785</td>
</tr>
<tr>
<td>12</td>
<td>Well 8, West Texas</td>
<td>Vertical Well</td>
<td>640</td>
</tr>
</tbody>
</table>

Table 5. Validation field cases analyzed for the future performance

<table>
<thead>
<tr>
<th>Case</th>
<th>Test Chronology</th>
<th>Case Name</th>
<th>(p_r), psia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present</td>
<td>Well M110-1979</td>
<td>2321</td>
</tr>
<tr>
<td>1</td>
<td>Future</td>
<td>Well M110-1987</td>
<td>2067</td>
</tr>
<tr>
<td>2</td>
<td>Present</td>
<td>Well A, Keokuk Field-1934</td>
<td>1734</td>
</tr>
<tr>
<td>2</td>
<td>Future</td>
<td>Well A, Keokuk Field-1935</td>
<td>1609</td>
</tr>
</tbody>
</table>

Field case No. 1: Carry City well

Gallice et al. (1999) presented multirate-test data for a well producing from the Hunton Lime in the Carry City Field, Oklahoma. The test was conducted in approximately 2 weeks during the well, which was producing at random rates, rather than in an increasing or decreasing rate sequence. The average reservoir pressure was 1600 psia, with an estimated bubble-point pressure of 2530 psia and an assumed skin value of zero. The multi-rate test of this well is summarized in Table 6.

Table 7 presents the predictions of the well’s performance for the test information at a flowing bottomhole pressure of 1194 psia, which representing a 25% of the pressure drawdown. As can be observed, the maximum well deliverability varies from
2550 to 4265 STB/D. The largest flow rate was calculated with Wiggins’s IPR, while the smallest rate was obtained using Fetkovich model. Fig. 9 shows the resultant IPR curves for the different methods of calculations such as Vogel, Fetkovich, Wiggins, and Sukarno in comparison with the actual field data and the new developed IPR model. It is clear from this figure that the method of the new developed IPR model is succeed to estimate the actual well performance. In addition, it can be clearly concluded from this figure that the methods of the new developed IPR model and Fetkovich’s model are nearly estimate the maximum oil flow rate for this well more accurately than the other models, and as indicated, the other methods overestimate the actual performance.

<table>
<thead>
<tr>
<th>Test Data</th>
<th>Flow Rate, STB/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>pwf, psia</td>
<td>qo, STB/D</td>
</tr>
<tr>
<td>1600</td>
<td>0</td>
</tr>
<tr>
<td>1558</td>
<td>235</td>
</tr>
<tr>
<td>1497</td>
<td>565</td>
</tr>
<tr>
<td>1476</td>
<td>610</td>
</tr>
<tr>
<td>1470</td>
<td>720</td>
</tr>
<tr>
<td>1342</td>
<td>1045</td>
</tr>
<tr>
<td>1267</td>
<td>1260</td>
</tr>
<tr>
<td>1194</td>
<td>1470</td>
</tr>
<tr>
<td>1066</td>
<td>1625</td>
</tr>
<tr>
<td>996</td>
<td>1765</td>
</tr>
<tr>
<td>867</td>
<td>1895</td>
</tr>
<tr>
<td>787</td>
<td>1965</td>
</tr>
<tr>
<td>534</td>
<td>2260</td>
</tr>
<tr>
<td>351</td>
<td>2353</td>
</tr>
<tr>
<td>183</td>
<td>2435</td>
</tr>
<tr>
<td>166</td>
<td>2450</td>
</tr>
</tbody>
</table>

Table 6. Test data- Field Case No.1

Fig. 9. The predicted inflow curves by the different used methods in comparison to the actual field data for Case No.1
Table 7. Prediction of the performance of Case No.1 at 25% of the pressure drawdown

<table>
<thead>
<tr>
<th>Field Data</th>
<th>The new IPR method</th>
<th>Vogel method</th>
<th>Fetkovich method</th>
<th>Wiggins method</th>
<th>Sukarno method</th>
</tr>
</thead>
<tbody>
<tr>
<td>p,psia</td>
<td>q_w, STB/D</td>
<td>q_o, STB/D</td>
<td>q_w, STB/D</td>
<td>q_o, STB/D</td>
<td>q_w, STB/D</td>
</tr>
<tr>
<td>1600</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1558</td>
<td>235</td>
<td>297</td>
<td>169</td>
<td>213</td>
<td>164</td>
</tr>
<tr>
<td>1497</td>
<td>565</td>
<td>614</td>
<td>408</td>
<td>444</td>
<td>398</td>
</tr>
<tr>
<td>1476</td>
<td>610</td>
<td>703</td>
<td>489</td>
<td>516</td>
<td>477</td>
</tr>
<tr>
<td>1470</td>
<td>720</td>
<td>728</td>
<td>511</td>
<td>536</td>
<td>499</td>
</tr>
<tr>
<td>1342</td>
<td>1045</td>
<td>1140</td>
<td>977</td>
<td>920</td>
<td>965</td>
</tr>
<tr>
<td>1267</td>
<td>1260</td>
<td>1321</td>
<td>1233</td>
<td>1115</td>
<td>1225</td>
</tr>
<tr>
<td>1194</td>
<td>1470</td>
<td>1470</td>
<td>1288</td>
<td>1470</td>
<td>1470</td>
</tr>
<tr>
<td>1066</td>
<td>1625</td>
<td>1688</td>
<td>1856</td>
<td>1559</td>
<td>1879</td>
</tr>
<tr>
<td>996</td>
<td>1765</td>
<td>1790</td>
<td>2051</td>
<td>1690</td>
<td>2091</td>
</tr>
<tr>
<td>867</td>
<td>1895</td>
<td>1954</td>
<td>2382</td>
<td>1905</td>
<td>2462</td>
</tr>
<tr>
<td>787</td>
<td>1965</td>
<td>2044</td>
<td>2569</td>
<td>2021</td>
<td>2679</td>
</tr>
<tr>
<td>534</td>
<td>2260</td>
<td>2284</td>
<td>3062</td>
<td>2309</td>
<td>3297</td>
</tr>
<tr>
<td>351</td>
<td>2353</td>
<td>2428</td>
<td>3329</td>
<td>2447</td>
<td>3680</td>
</tr>
<tr>
<td>183</td>
<td>2435</td>
<td>2544</td>
<td>3507</td>
<td>2522</td>
<td>3985</td>
</tr>
<tr>
<td>166</td>
<td>2450</td>
<td>2555</td>
<td>3521</td>
<td>2527</td>
<td>4013</td>
</tr>
<tr>
<td>0</td>
<td>2657</td>
<td>3627</td>
<td>2550</td>
<td>4265</td>
<td>3205</td>
</tr>
</tbody>
</table>

The average absolute errors percent between the actual flow-rate data and the calculated rate for the five IPR methods that used in this study are shown in Fig. 10 for the comparison. It is clear from this figure that the new developed IPR model has the lowest average absolute error percent that is 6.47%, while the average absolute error percent for Fetkovich’s method is 8.56%. The other single-point methods have average absolute errors percent ranging from 20.1 to 32.3% for Sukarno and Wiggins, respectively.

Fig. 10. The average absolute errors percent at 25% drawdown for Case No.1
In summary, the new model provided the best estimates of well performance for this case’s entire range of interest. The multipoint method of Fetkovich tends to do a better job of predicting well performance than the other three single-point methods. Overall, the single-point methods of Vogel, Wiggins, and Sukarno provided similar great average differences in this case. As indicated in this work, the more important relationship to evaluate well performance is the relationship between the oil mobility function and the average reservoir pressure, and this was clearly demonstrated from the value of the average absolute error percent that resulted from using the new developed IPR model.

Field cases summary for the present inflow performance

The additional cases and their analysis are presented in detail in Del Castillo (2003). Table 8 presents a summary of the average absolute errors percent that was obtained for each method in each one of the twelve case studies that were examined. As indicated, the method of the new developed IPR model always provided the most reliable estimates of the actual well data analyzed. It has the lowest value of the total average absolute error percent, which is 6.6 % in comparison with that of Fetkovich's method, which has a reasonable average absolute error percent of 7 % but is still higher than the method of the new developed IPR model. The other methods always provided less accurate values for the pressure-rate estimates of the actual well data that used in this analysis.

<table>
<thead>
<tr>
<th>Case</th>
<th>Total Average Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The new IPR</td>
</tr>
<tr>
<td>1</td>
<td>6.47</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>19.6</td>
</tr>
<tr>
<td>5</td>
<td>3.4</td>
</tr>
<tr>
<td>6</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>3.1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>5.6</td>
</tr>
<tr>
<td>10</td>
<td>5.9</td>
</tr>
<tr>
<td>11</td>
<td>5.4</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
</tr>
<tr>
<td>Average %</td>
<td>6.6</td>
</tr>
</tbody>
</table>

The method of the new developed IPR model tends to do a better job of predicting well performance than the other methods, and this it may be due to assume an accurate relationship between the oil mobility function and the average reservoir pressure (i.e., the
Reciprocal Relationship). Overall, the single-point methods of Vogel, Wiggins, and Sukarno provided great average absolute errors percent in the cases examined – 12.1 to 15.7%.

However, the following comment should be introduced based on the above table. Case No.4, the Vogel's model provided the best estimates of well performance for this case. The single point method of Wiggins tends to do a good job of predicting well performance in this case. Finally, it can be concluded from this case that the new IPR model has some limitations in case of low-pressure reservoirs, which have a reservoir pressure less than 1000 psia. This is because there were no sufficient data below 1000 psia in case of development the new IPR model, therefore it is recommended in this case to use Vogel’s model.

Field case summary for the future performance

The analyses of the two future field cases are presented in detail in Elias (2009). Table 9 presents a summary of the average absolute errors percent that was obtained for each method in each one of the two future case studies that were examined. As indicated, the method of the new developed IPR model always provided the most reliable estimates of the actual well data analyzed. It has the lowest value of the total average absolute error percent, which is 15%. The other methods always provided less accurate values for the pressure-rate estimates of the actual future well data that used in this analysis. Overall, the other methods of Fetkovich, Vogel, and Wiggins provided great average absolute errors percent in the cases examined range from 25.5% and 31.5% for Fetkovich and Vogel, respectively.

Table 9. Summary of the average absolute errors percent – Future field cases

<table>
<thead>
<tr>
<th>Future Field Case</th>
<th>Total Average Errors %</th>
<th>The new IPR</th>
<th>Vogel</th>
<th>Fetkovich</th>
<th>Wiggins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>21</td>
<td>28</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
<td>35</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>Average %</td>
<td></td>
<td>15</td>
<td>31.5</td>
<td>25.5</td>
<td>30.5</td>
</tr>
</tbody>
</table>

However, general comment can be presented based on Table 9 and the future cases analyzed in this work, the average absolute error percent is almost as great for the Fetkovich's method as compared to the method of the new developed IPR model – 25.5% compared to 15%. As indicated, the main reasons for that are:

1. Fetkovich considered the relationship between the mobility function and the average reservoir pressure is linear relationship (see Fig. 3), but the new IPR model considered this relation is reciprocal relationship (see Fig. 5 and Fig. 6) which cover the entire range of interest more accurately.
2. The backpressure equation parameter \((n)\) of Fetkovich IPR equation does not take into consideration the change in the average reservoir pressure.

3. The new model IPR parameter \((\alpha)\) of Eq. 20 takes into consideration the change in the average reservoir pressure (see Eq. 21 and Eq. 22).

Conclusions

In this work, we reviewed the most commonly used IPR models, also, we developed new IPR model. The new IPR was compared to the most commonly used models using field data (12 field cases). Based on this work, we can conclude the following:

1. A general correlation for \(\alpha\)-parameter that represent the oil mobility as a function of \(p_r\) was developed by using 47 field cases. A new method to construct and predict the IPR curve for solution gas drive reservoirs was developed by using this general correlation of \(\alpha\)-parameter

2. The validity of the new IPR model was tested through its application on 12 field cases in comparison with the behavior of the most common methods that are used in the industry. The results of this validation showed that the new IPR model ranked the first model that succeeded to predict the behavior of the IPR curve for the 12 examined field cases, while the other models of Fetkovich, Sukarno, Vogel, and Wiggins ranked the second, the third, the forth, and the fifth, respectively

3. The new IPR model requires one test point and is as accurate or more than Fetkovich’s model which requires three test points

4. The new developed IPR outperformed all available IPR models except at low pressures (Less than 1000 psia). At these low pressures Vogel’s correlation was found to be the most accurate model.

5. The range of applicability of Alpha- pressure relationships Eq. 21 and Eq. 22 is 860 to 7000 psi.

Nomenclature

\[
\begin{align*}
A & \quad \text{Drainage area of well, sq ft} \\
a_0, a_1, a_2, a_3 & \quad \text{Constants for Sukarno and Wisnogroho, dimensionless} \\
API & \quad \text{stock tank oil liquid gravity in } ^0\text{API} \\
b_0, b_1, b_2, b_3 & \quad \text{Constants for Sukarno and Wisnogroho, dimensionless} \\
B_o & \quad \text{Oil formation volume factor, bbl/STB} \\
B_g & \quad \text{Gas formation volume factor, bbl/SCF} \\
C_A & \quad \text{Shape constant or factor, dimensionless} \\
C_1, C_2, C_3, C_4, D & \quad \text{Wiggins's constants, dimensionless} \\
d, e & \quad \text{Del Castillo, Yanil's constants, dimensionless} \\
h & \quad \text{Formation thickness, ft} \\
J & \quad \text{Productivity index of the reservoir (PI), STB/psi} \\
n & \quad \text{deliverability exponent for Fetkovich, dimensionless}
\end{align*}
\]
N_1 Oil IPR parameter for Klins's equation, dimensionless

p_b Bubble Point Pressure, psia

p_D Dimensionless pressure

p_e Pressure at the outer boundary, psia

PI_a Productivity index from the new IPR model, STB/psi

p_r Average reservoir pressure, psia

p_{of} Bottom hole flowing pressure, psia

q_o Oil flow rate, STB/D

$q_{o, \text{max}}$ Maximum oil flow rate, STB/D

r_e Drainage Radius, ft

R_s Solution gas-oil ratio, scf/STB

r_w Well Radius, ft

S Radial flow skin factor, dimensionless

S_o Oil saturation, fraction

T Reservoir temperature, °F

x Reciprocal model constant, dimensionless

y Reciprocal model constant, dimensionless

\[
\frac{k_{ro}}{\mu_o B_o} \bigg|_{p_D = 0}
\]

Mobility ratio at zero dimensionless pressure

\[
\frac{\frac{k_{ro}}{\mu_o B_o}}{\mu_o B_o} \bigg|_{p_D = 0}
\]

Mobility ratio first derivative at zero dimensionless pressure

\[
\frac{k_{ro}}{\mu_o B_o} \bigg|_{p_D = 0}
\]

Mobility ratio second derivative at zero dimensionless pressure

\[
\frac{k_{ro}}{\mu_o B_o} \bigg|_{p_D = 0}
\]

Mobility ratio third derivative at zero dimensionless pressure

α Oil IPR parameter for the new IPR model, dimensionless

γ Euler's constant (0.577216)

γ_g Gas gravity, fraction

γ_o Oil gravity, fraction

μ_o Oil Viscosity, cp

Δ_p Pressure drawdown, psi

References

Appendix A

In this Appendix, the derivation of the new IPR equation is based on the pseudosteady state flow equation for a single well in a solution gas drive reservoir systems (pseudopressure formulation). In addition the relation between the mobility of the oil phase and \(p_r \) (i.e., Reciprocal relationship – \(Mo = 1.0 / (a \cdot p_r + b) \)) is used. Where \(a \) and \(b \) are the two equation variables. The definition of the oil-phase pseudopressure for a single well in a solution gas drive reservoir is given as:

\[
p_{po}(p) = \left[\frac{\mu_o B_o}{k_{ro}} \right] \int_{p_{ro}}^p \frac{k_{ro}}{\mu_o B_o} dp .
\]
(A.1)

The pseudo-steady state flow equation for the oil-phase in a solution gas drive reservoir is given by:

\[
p_{po}(p_r) = p_{po}(p_{wf}) + q_o \cdot b_{SS} ,
\]
(A.2)

where:

\[
b_{SS} = 141.2 \frac{\mu_o B_o}{k_{ro}} \frac{1}{h} \left(\ln \left(\frac{r_e}{r_w} - \frac{3}{4} + S \right) \right) .
\]
(A.3)

In this work, a new form for the oil mobility function at different values of the average reservoir pressure (i.e., the reciprocal relationship) is obtained from the result of the simulation study that performed on MORE simulators using the six simulation cases as follows:

\[
\left[\frac{k_{ro}}{\mu_o B_o} \right]_{p_r} = \frac{1}{x \cdot p_r + y} .
\]
(A.4)

Where, \(x \) and \(y \) are two variables established from the presumed behavior of the mobility profile.

Solving Eq. A.2 for the oil rate, \(q_o \), the following equation for the oil flow rate can be presented:

\[
q_o = \frac{1}{b_{SS}} \left[p_{po}(p_r) - p_{po}(p_{wf}) \right] .
\]
(A.5)

Solving Eq. A.5 for the maximum oil rate, \(q_{o, max} \) (i.e., at \(p_{wf} = 0 \) or \(p_{po}(p_{wf}) = 0 \)):

\[
q_{o, max} = \frac{1}{b_{SS}} \left[p_{po}(p_r) - p_{po}(p_{wf} = 0) \right] .
\]
(A.6)

Dividing Eq. A.5 by Eq. A.6 gives the "IPR" form (i.e., \(q_o/q_{o, max} \)) in terms of the pseudopressure functions, which yields:

\[
\frac{q_o}{q_{o, max}} = \frac{p_{po}(p_r) - p_{po}(p_{wf})}{p_{po}(p_r) - p_{po}(p_{wf} = 0)} .
\]
(A.7)

At this point, it should be noted that, it is not the goal to proceed with the development of an IPR model in terms of the pseudopressure functions, \(p_{po}(p) \)-rather, the goal is to develop a simplified IPR model using Eq. A.4 and Eq. A.7 as the base relations. Substituting Eq. A.4 into Eq. A.1, this yields:
\[p_{p_a}(p) = \left[\frac{\mu_o B_o}{k_{ro}} \right]_{p_a}^p \int_{p_{base}}^p \left[\frac{1}{x \cdot p + y} \right] dp = \left[\frac{\mu_o B_o}{k_{ro}} \right]_{p_a}^p \frac{1}{a} \ln(x \cdot p + y) \bigg|_{p_{base}}^p. \]

Or,
\[p_{p_a}(p) = \left[\frac{\mu_o B_o}{k_{ro}} \right]_{p_a}^p \frac{1}{a} \ln(x \cdot p + y) - \ln(x \cdot p_{base} + y). \quad (A.8) \]

Substituting Eq. A.8 into Eq. A.7, this gives:
\[\frac{q_o}{q_{o, \max}} = \frac{\ln(x \cdot p + y) - \ln(x \cdot p_{o, new} + y)}{\ln(x \cdot p_{base} + y) - \ln(y)} \]

Or,
\[\frac{q_o}{q_{o, \max}} = \frac{\ln(x \cdot p_{o, new} + y) - \ln(x \cdot p_{o, new} + y)}{\ln(x \cdot p_{base} + y) - \ln(y)}. \quad (A.9) \]

Rearranging Eq. A.9 gives the following form:
\[\frac{q_o}{q_{o, \max}} = \frac{\ln(x \cdot p_{r} + y)}{\ln(x \cdot p_{o, new} + y)} - \frac{\ln(y)}{\ln(x \cdot p_{r} + y)}. \quad (A.10) \]

Or,
\[\frac{q_o}{q_{o, \max}} = \frac{\ln(x \cdot p_{r} + y)}{\ln(x \cdot p_{o, new} + y)} - \ln\left(\frac{x \cdot p_{r} + 1}{y \cdot p_{r} + 1}\right). \quad (A.11) \]

Dividing the right term through Eq. A.11 by the term \(y \) gives the following form:
\[\frac{q_o}{q_{o, \max}} = \frac{\ln\left(\frac{x \cdot p_{r} + 1}{y \cdot p_{r} + 1}\right)}{\ln\left(\frac{x \cdot p_{o, new} + 1}{y \cdot p_{o, new} + 1}\right)}. \quad (A.12) \]

And then, replace \(x/y \) by \(\alpha \) and substituting this definition into Eq. A.12, this yields the following IPR form:
\[\frac{q_o}{q_{o, \max}} = 1 - \frac{\ln(\alpha \cdot p_{o, new} + 1)}{\ln(\alpha \cdot p_{r} + 1)}. \quad (A.13) \]

Where: \(\alpha \) is the oil IPR parameter for the new IPR model.

It is suggested that Eq. A.13 serves as an equation of the proposed new IPR model.