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LINEAR EQUATIONS DERIVED FROM LABORATORY
EXPERIMENTS TO DESCRIBE IMMISCIBLE DISPLACEMENT

An accurate analytical interpretation method to determine the Leverett-function (fw)
and its derivative (fw') from immiscible displacement data in core plugs is presented.
Linear equations are developed to describe the displacement processes occurring before
and after breakthrough. A quadratic function is introduced to represent the saturation
distribution along the cores. The relationships derived in this study can be used for
analysis of core tests involving constant injection rates and constant pressure differ-
ences. The applicability, practicality, and accuracy of the new analytical method are
verified by means of the experimental data obtained in the present study and by those
reported in the literature.

INTRODUCTION

The analysis of the displacement processes of immiscible fluids (water, oil, gas) in
porous core plugs essentially requires (1) the relationships between the volumes of the
injected and produced fluids and (2) the injected or displaced fluid saturation distribu-
tions along the core plug as a function of time.

The theoretical descriptions of the immiscible fluid displacement have been pre-
sented by Leverett [1], Buckley and Leverett [2] and Welge [3]. Also, various attempts
[4]-[8] have been made to develop methods for interpretation of the laboratory core
flow tests and determining the capillary pressure and/or relative permeability curves.
The data of the injected and produced fluid volumes after breakthrough in immiscible
displacements have been used for the estimation of the petrophysical properties by em-
pirical correlations [9],[10], by discrete means [Ucan et al., 15], graphical procedures
[11] and analytical means [Shen and Ruth, 14]. However, most of these methods are
computationally tedious.

The study by Ucan et al. [15] has indicated that uniqueness in the interpretation of
displacement data can only be achieved by facilitating both the internal and external
fluid measurements. Therefore, the determination of the local water or oil saturations at
different points along the core plug is especially important for accurate interpretation of
laboratory experiments. However, the direct measurement techniques resorted for this
purpose, such as CT scanning, gamma-ray attenuation and NMR imaging, are expensive
and time consuming.

This paper presents a new practical method, which alleviates the aforementioned
problems. The present study is restricted to the presence of  two mobile fluids. A third
type of fluid might be present in the pores, but it is considered stationary under the ap-



plied pressure gradient. Fluid displacement tests can be carried out  with a constant flow
rate of the injected fluid, then the pressure difference across the core plug changes, or
with a constant pressure difference  applied across the core plug, then the  flow rate of
the injected fluid varies. Until the breakthrough, the fluid injected into the core plug
progresses ahead inside the core, but only the displaced fluid present in the core is pro-
duced at the outlet face. After the breakthrough,  the injected and displaced fluids are
simultaneously produced  at the outlet face. Therefore, the fluid displacements before
and after the breakthrough of the injected fluid are analysed as two separate problems.
The practical parity relationships necessary  for analysis and interpretation of the im-
miscible fluid displacement in laboratory cores are formulated and verified by experi-
mental data.

FORMULATION

Consider the one-dimensional horizontal flow of two immiscible fluids through a
porous rock core plug.  The physical properties of the fluids and the rock are assumed
constant.  The present laboratory experiments have used cores with  5 to 95 cm in
length and 2 to 4 cm in diameter which were extracted from natural or artificial rocks.
Although some inhomogeneity and heterogeneity may exist in the natural and artificial
rocks used in the core flow tests, the formulation is carried out assuming homogeneous
cores, because the method presented here does not require the local saturation values
and the objective is to derive the parity relationship between the inlet and outlet flow
conditions of a core plug during immiscible fluid displacement. Therefore, the internal
details of the flow pattern is not of a concern here.  The displaced and injected fluids
are denoted by the subscript k and d, respectively.

Assume that the rock is initially (t=0) fully saturated with the wetting fluid and
there is no irreducible non-wetting fluid present. Thus, the irreducible non-wetting fluid
saturation is Sd0 = 0 and  the wetting fluid saturation is Sk0=1. The non-wetting fluid is
injected into the core at a flow rate of qdi. Then, the cumulative volume of the injected
fluid is given by:

∫=
t

0
dii dtqV . (1)

Let qk and qd represent the effluent flow rates of the displaced and injected fluids at the
core outlet, respectively.  Then, the cumulative effluent volumes of the displaced and
injected fluids are given, respectively, by:

∫=
t

0
kk dtqV ; (2)

∫=
t

0
dd dtqV . (3)

Assuming that the fluids are incompressible under the applied pressure conditions of the
experimental core flow tests, the overall volumetric balance of the fluids over the core
plug after the breakthrough of the injected fluid is given by:

dki VVV += . (4)
Similarly, the following equation can be written for the flow rates:

dkdi qqq += . (5)



The effluent production rate and cumulative volume of the injected fluid are zero
until the breakthrough. Therefore, before and at the breakthrough time , t=ta, Eqs. 4 and
5 simplify, respectively as:

kaia VV = ; (6)

kadi qq = q . (7)
After the breakthrough, the fractional flows of the produced fluids at the effluent

side of the core plug are given, respectively, by:

di

k
k q

qf = ; (8)

di

d
d q

qf = . (9)

If capillary effects are negligible, consider Welge’s [3] equation given by:
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from which the following expression is obtained:
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Sd  and Vp denote the core length average saturation of the injected fluid and the
pore volume of the core, respectively.

Invoking Eqs. 1 and 2 into Eq. 8 yields:

f dV
dVk

k

i

= . (12)

In addition, a volume balance between the injected and displaced fluids over the
core leads to the following equation:
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Therefore, substituting Eqs. 12 and 13 into Eq. 11, yields the following expression:
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The relationships given by Eqs. A20 and A21  in the appendix can be combined to
yield:
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where „b”   is an integration constant as defined in the appendix.
Thus, substituting Eq. 15 into Eq. 14, and then considering that the pore volume Vp

remains constant and separating the variables, a differential equation in the following
form can be obtained:
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The general solution of Eq. 16 yields a linear expression as:
V
V

a b
V
V

i

k

i

p
= + , (17)

where „a” is an integration constant, Vi/Vp is the independent variable, and Vi/Vk is
the dependent variable.  Applying Eq. 6 at the breakthrough time (t=ta), Eq. 17 simpli-
fies to:

V
V

a
b

i

p a

=
−1

. (18)

In addition, the following equation can also be written based on Eq. 11:
V
V
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where Sdf   is the average saturation of the injected fluid at breakthrough. Thus,
substituting Eq. 19 into Eq. 15 yields:
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Next consider Welge’s [3] equation given by:
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where the subscript, f, denotes to the shock front.  Therefore, substituting Eqs. 19
and 20 into Eq. 21 results in  the following expression for the integration constant, „a”:

kfdf ff1a =−= . (22)
According to Eq. 22, the integration constant, „a”, is equal to the fractional flow of the
displaced fluid at the breakthrough time.

The integration constant, „b”, can be determined by considering the condition at the
infinite volume of  the injection fluid throughput ( t → ∞ , and  Vi → ∞  ). At this state,
the displaced fluid saturation reaches its minimum value, i.e. the irreducible saturation
Sk min = Skm’ and the injected fluid saturation reaches its maximum value. Thus, the limit
of Eq. 17 can be expressed as:
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Substituting Eqs. 22 and 23 for the integration constants, „a” and „b”, into Eq. 17

gives a linear equation between 
V
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Eliminating the integration constant, „b”, between  Eqs. 15 and 23 leads to:



( ) ( )( )S S S S S Sd d d d d d− = − −0 0 0max . (25)
This equation expresses the average saturation increment of the injected fluid as the

geometric mean of the injected fluid saturation increments at the inlet and outlet faces
of the core plug.

In the next section, Eqs. 24 and 25 are applied to interpret the results of the labora-
tory displacement experiments conducted in two steps: (1) Oil injection into a water
saturated core having initially no irreducible oil  available and then (2) water injection
into the previously oil injected core which may or not have attained the irreducible wa-
ter saturation state.

At the first step, an air-dry rock core sample is placed into the core holder. The core
is fully saturated by water (Sw=1) and the pore volume (Vp) of the core is determined.
Then, the water is displaced by injecting oil into the core plug. For the present oil/water
system, Eqs. 24 and 25 can be rewritten, respectively, as the following, by replacing
d→o because the injected fluid is oil and k→w because the displaced fluid is water
and by considering that the initial the oil saturation in the rock is zero (So0=0.0).
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, (26)

where Ni and Wp are the cumulative volumes of the oil injected at the core inlet and
the water produced at the core outlet sides, respectively. The core length average oil
saturation is given by:

S S So o o= max . (27)
Following the injection of oil over a sufficiently long period of time, the rock at-

tains the irreducible water saturation S S Sw wi o0 1= = − max  and the oil saturation reaches
its maximum S So o0 = max . Then, the oil is displaced by injecting water. In this case, Eqs.
24 and 25 can be rewritten, respectively, as the following by substituting d→w because
the injected fluid is water and k→o because the displaced fluid is oil:
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( ) ( )( )S S S S S Sw wi w wi w wi− = − −max . (29)

The equations presented above are valid for both the qdi=constant and
∆p = constant cases.



APPLICATIONS AND VERIFICATION

The schematic drawing of the equipment used in the laboratory experiments is
shown in Fig. 1. Essentially it consists of the water and oil containers and a Hassler-
type coreholder. The outlet face is open to the atmospheric pressure. Thus, during the

displacement process, the
inlet face pressure is the
differential gauge pres-
sure. The volumes of the
produced fluids (oil and
water) are measured as a
function of time using
graduated cylinders. Wa-
ter or oil injection is ac-
complished by applying
the N2 gas at constant
pressure. The parameters
of the cores used in the
experiments are summa-
rised in Table 1. The re-
sults of the experimental
displacement processes
conducted in the present
study are presented in Ta-
ble 2. The processed pa-
rameters of the displace-
ment data extracted from
the literature are calcu-
lated using Eq. 17 are also
given in Table 2. The
measured data of typical
experiments are plotted in

Fig. 2.
As indicated by Fig. 2, the plot of the experimental data yields straight lines, con-

firming the validity of the linear relationship between the volume of injected oil and
produced water as implied by Eq. 26 for the water saturated rock displaced by oil. From
the conditions of the above described theoretical derivation and experimental results the
following conclusions are drawn:

1. In case of water wet rock, Somax<1. Therefore, b>1. The closer the b parameter is
to the unity, the greater the maximum oil saturation and the less the irreducible water
saturation are.  These are the characteristics of the high porosity rocks. Conversely, the
greater the b value, the smaller Somax and the greater Swi are in low porosity rocks.

2. The parameter a varies in the range of 0<a<1 because after the breakthrough of
the oil front, the value of the fractional oil varies in the 0<fof<1 range, and fof=1-a
according to Eq. 22. Generally, the value of a is near the lower end of the (0-1) interval,
because water can be displaced by oil with good efficiency.

Fig. 1. The schematic of the equipment used for the
displacement experiments











The water displacement follows the above described oil displacement process.  It is
possible that the Sw0>Swi state can be reached instead of the state Swi=1-Somax assumed
in the above formulation.  Thus, some modifications are necessary to take into account
the amount of water Vp(Sw0-Swi)=Vw0. Again, the plots of data display straight lines
trend as shown in Fig. 2 confirming the validity of the linear Eq. 28 for the water dis-
placement. In this case, the following observations are made:

1. As b=(Swmax-Sw0)-1according to Eq. 23, therefore b>1, because Swmax<1 and
Sw0>0. The value of b is smaller in the water displacement than the oil displacement. It
was also observed that (Swmax-Sw0)<Somax.

2.  The parameter, a, is less than 1 because fwf=1-a according to Eq. 22 and
1f0 wf ≤≤ . The value of the parameter, a, associated with the water displacement is

greater than that of the oil displacement, because the water, which has a lower viscosity,
displaces the oil with a poor efficiency.

CONCLUSIONS

Both the data extracted from the literature and those measured in the present study
have verified that the linear type relations indicated by Eq. 26 and 28 are valid and ac-
curately describe the immiscible displacement processes conducted at constant injection
flow rates or constant pressure differences across the core plugs.  However, further in-
vestigations are required to determine the dependency of the parameters, „a” and „b”,
on the injection rate. Using the above derived linear equations along with the Leverett
and the analytical relative permeability functions such as those given by Tóth [12] may
provide practical convenience and better accuracy in the analysis and interpretation of
the immiscible fluid displacement data. The new method presented in this paper offers
some advantages for analyzing immiscible fluid displacement data, because it is practi-
cal and rapid, and it requires only the conventional coreflow measurements.
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Fig. 2. The plots of typical displacement data according to the present theory.



NOMENCLATURE

a empirical constant Subscripts
b empirical constant a breakthrough
d core diameter, cm d displacing
f fractional fluid flow, dimesionless df displacing front
L core length, cm d0 initial displacing
N volume of oil, cm3 f front
p pressure, bar i injected
∆p pressure difference, bar k displaced
q flow rate, cm3/s o oil
S saturation, dimensionless p pore or produced
t time, s w water
V volume, cm3 Superscripts
W volume of water, cm3 - average over core length
x length, cm ‘ denotes a derivative
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APPENDIX

REPRESENTATION OF THE FLUID SATURATION DISTRIBUTION ALONG
THE CORE PLUG

The objective is to represent the fluid saturation distribution along the core length
with a reasonable accuracy based on the information of the saturations at the inlet and
outlet faces and the average saturation over the core length. The formulation of the
practical interpretation  method for analysis of immiscible displacement in laboratory
cores presented in this paper is based on the consideration that it will be applied at and
after breakthrough. Therefore, it is assumed and verified by experimental data that the
saturation distribution of the injected fluid can be adequately represented by the quad-
ratic functions given in the following derivation.

1. Representing the oil saturation distribution during oil injection
Consider a core fully saturated initially with water, thus Sw0=1. The core is as-

sumed homogeneous and isotropic. During the oil injection, only water is produced un-
til the breakthrough time, ta. At breakthrough, the oil saturation at the outlet face is Sof.
The oil saturation at the inlet face is Somax.  Let the average oil saturation of the core be
Sof  at the breakthrough time.

After breakthrough, t>ta, the oil saturation is Somax at the core inlet, x=0 as the vol-
ume of the injected oil is infinite compared to the pore volume at that point.  Thus, the
oil saturation is maximum and only irreducible water saturation (Swi=1-Somax) exists at
the inlet face.  The oil saturation at the outlet face is denoted by So2. The average oil
saturation of the core is So . Based on the present measurements and experiments, the
oil saturation distribution over the core length, L, at a given time, t, can be represented
by the following function:
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= . (A1)

The validity of Eq. A1 is confirmed by the cases presented in the applications.
Applying the boundary conditions at the breakthrough time, t=ta,. that So(0)=Somax

at x=0, and So(L)=Sof at x=L, the parameters, A and B, are given by the following ex-
pressions, respectively:
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After breakthrough, t>ta, So(0)=Somax at x=0, and So(L)=So2. Then, the following
expressions are obtained for the parameters:
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For example, if at breakthrough t=ta, Somax=0.81, Sof=0.49 for the oil injection proc-
ess, then, it is determined that A=3.15 , B=3.50  and Sof = 0 6300. , and, therefore, the
oil saturation distribution function is estimated to be:
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If at a time after breakthrough t 〉 ta , Somax=0.81 and  So2=0.64, then it is determined that
So = 0 7200. , .. A=7.20 and B=8, and the oil saturation distribution function is given by:
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The average oil saturation over the core length can be estimated using the oil saturation
distribution function given by Eq. A1 after breakthrough for t>ta times:

2omaxoomaxoo SS)Lx(SSS === . (A8)

At breakthrough, t=ta, the average oil saturation over the core length is given by:

ofmaxoof SSS = . (A9)



Both Eq. A8 and Eq. A9 imply that the average saturation is equal to the geometric
mean of the saturation values at the inlet and outlet faces. Typical saturation distribution
and average saturation plots based on the Eqs. A6-A9 are presented in Fig. A1 and A3.

2. Representing the water saturation distribution during water injection
At the beginning of the water injection process, the water saturation in the core is at

least equal  to the irreducible water saturation Swi or somewhat higher (Sw0). After the
breakthrough time (t≥ ta), the water saturation distribution along the core can be repre-
sented as:
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Again, the parameters, A and B, are determined by applying the boundary condi-
tions at a given time. At x=0, Sw=Smax, and at x=L Sw=Swf at the breakthrough time t=ta.
Thus,
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Fig. A1. Saturation distribution during oil injection.
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Fig. A2. Saturation distribution during water injection.
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After the breakthrough time t>ta Sw=Sw2 and therefore:
( )( )

( ) ( )0w2w0wmaxw

0wmaxw0w2w

SSSS
SSSS

A
−−−

−−
= ; (A14)

( )
( ) ( )0w2w0wmaxw

0w2w

SSSS
SS

B
−−−

−
= ; (A15)

( )( )S S S S S Sw w w w w w= + − −0 0 2 0max . (A16)
Eqs. A13 and A16 express the average water saturation increment as the geometric
mean of the water saturation increments at the inlet and outlet faces.

For example, if the parameters used for water injection are Swmax=0.85, Swf=0.49,
Sw0=0.19 , then:

( )

2

w

069368.2
L
x

681163.119.0xS
















+
+= . (A17)

The core length average water saturation at breakthrogh is given as Swf = 0 6350. ,
and if Swmax=0.85, Sw2=0.64, Sw0=0.19 , then it follows that
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and Sw = 0 7350. .
The water saturation distributions calculated by Eqs. A17 and A18 are presented in

Fig. A2 and A3. Tables A1 and A2 present comparisons of the published measured data
[11], [13] and the data calculated using the above derived relationships. The fact that the
average deviation is less than 5 thousandths proves the validity of the theory presented
here. This indicates that the average saturation can be calculated using only the satura-
tion values at the inlet and outlet  faces. But, in practice,  the determination of the satu-
ration at the outlet face is rather difficult. However, note that the average saturation can
be readily obtained alternatively using Eq. 13. Therefore, one of the practical advan-
tages of the above described theory is that the saturation value at the outlet face can be
estimated at any time during the immiscible displacement by using  only the informa-
tion on the average saturation over the core and the maximum saturation at the inlet
face.

Generally, after the breakthrough time, the saturation distribution of  the injected
fluid along the core can be represented by:
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Then, the average saturation can be expressed in the following manner:
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From Eq. A20, it can be obtained that:
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Table A1.
 Comparison of the published laboratory data and

the calculated data using the present theory.

Swi=0.35 Swmax=0.687 Swmax-Swi=0.337
Sw

Sw2 (measured) Sw2 ( calculated) ∆ Sw2 (meas.-calc.)

0.575 0.511 0.500 +0.011
0.593 0.534 0.525 +0.009
0.627 0.580 0.578 +0.002
0.643 0.617 0.605 +0.012
0.664 0.646 0.643 +0.003
0.675 0.664 0.663 +0.001
0.681 0.676 0.675 +0.001
0.687 0.687 0.687 0

+0.039/8=+0.00487
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Fig. A3. Average saturation during displacement.



Table A2.
Comparison of the published laboratory data and

the calculated data using the present theory.
Swi=0.10 Swmax=0.70 Swmax-Swi=0.60

Sw
Sw2 (measured) Sw2 (calculated) ∆ Sw2(meas.-cal.)

0.563 0.469 0.457 +0.012
0.582 0.495 0.487 +0.008
0.600 0.520 0.517 +0.003
0.617 0.546 0.546 0
0.636 0.572 0.579 -0.007
0.652 0.597 0.608 -0.011
0.666 0.622 0.634 -0.012
0.681 0.649 0.663 -0.014
0.694 0.674 0.688 -0.014
0.700 0.700 0.700 0

-0.035/10=-0.0035


