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CALCULATION OF RELATIVE PERMEABILITY
FROM DISPLACEMENT TEST DATA

In the porous reservoir-rocks for the description and simulation of the two-phase
flows the phase/relative permeability data and functions of fluids are necessary. The
function of relative permeability is given generally depending on the degree of satura-
tion of the wetting phase, and this function is determined in the most cases on the basis
of data taken from laboratory displacement tests performed on rock-samples.

Displacement tests can be carried out through a relatively short time, but the
evaluation of the data received can be considered as a highly complex job. During dis-
placement measurement the processing of data is made difficult by the unfavorable cap-
illary end-effect appearing on the inlet and outlet of the sample unless the displacement
has been made by a great speed, because then the value of the end effect shall have been
minimized.

Numerous methods are known to evaluate the data of displacement on an appropri-
ately big speed, these often apply an auxiliary graphic method, and in other cases some
empirical auxiliary functions will be applied.

The analytic method elaborated and developed by the Authors offers a possibility to
describe the permeability functions more accurately almost semi-analytically, and to
calculate these from the data of displacement.

INTRODUCTION

In the case of the description and simulation of the two-phase flow of the porous
reservoir-rocks the knowledge of data and functions regarding relative permeability of
fluids is necessary. The data of the relative permeability have been given generally on
the dependence of saturation of the wetting phase. The functions of relative permeabil-
ity - saturation can be determined most frequently on the basis of data of laboratory dis-
placement tests carried out on rock samples. Regarding the determination of the values
of relative permeability principally two laboratory methods have been introduced in the
practice of the oil industry: a) method using the flow of steady-state condition, where
both fluids considered as incompressible will be injected (simultaneously) into the core
and the method b) using the flow of changing condition, where one of the fluids will be
displaced by the other one, but only one fluid will be injected into the core simultane-
ously.

The data processing of tests using the steady-state flow is relatively simple, but it is
difficult and complex to carry out the test itself because after each alteration in satura-
tion the continuous average saturation along the length of the core should be kept on a
steady value over a long time (several hours long). The laboratory test of displacement
of changing flow condition can be performed within a relatively short time but the
evaluation of data is a very complex job. In the case of both methods of measurement
the unfavorable capillary end-effect appearing in the inlet and outlet sections make the
processing of the data more complicated, unless the displacement was made by a not big



speed, through which the rate of the end-effect will be minimized. It is difficult to reach
a high speed, in the case a practical and an in-field displacement it can not be realized
either.

Though in the case of all methods being known so far the parameters of a discrete
measurement point have been applied for the calculation of the relative permeability,
the method proposed by us which will be introduced in the following, however uses
some functions determined on the basis of some mating parameters of displacement
process to describe functions of the relative permeability.

THEORETICAL EXAMINATION OF THE TWO-PHASE DISPLACEMENT
PROCESS WITH CHANGING FLOW

The laboratory measurements of displacement are generally carried out on cylindri-
cal rock-cores under a linear flow. During experimental measurement of linear dis-
placement process: A) p1-p2= ∆p(t) = a constant depression, or B) qi=qi(t) = a con-
stant injection rate are generally used. In this correspondence also the theoretical ex-
amination will be performed for these both conditions separately. It will be demon-
strated how the sum and ratio of the mobility of the fluids in the displacement are de-
pendent on parameters of the displacement, and on the cumulative volume of the in-
jected fluid (expressed generally as a quotient of the pore volume).

A) Description of Linear Two-Phase Flow At ∆P= ∆P(T) = Constant Depression

After the breakthrough of displacing phase the Darcy law will be written on the
two-phase linear flow established along the full length of the rock core, this applies both
for the displacing (d) and the displaced (k) phase, by neglecting the gradient of the cap-
illary pressure (dPc/dx)=0:
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will be received. The function
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will be introduced that should be the function of saturation of displacing phase, so
the connection
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will be given. After reordering the equation (5) the next differential equation will
be given:
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Integrating the given differential equation at the following conditions:
at x=0 p=p1(t) = const.;
at x=L p=p2(t) = const. and
p1 > p1



the next will be given:
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The solution of equation (7) to Y(Sd) if ∆p=constant, when in the outlet the satu-
ration of the momentary fluid of displacement is Sd2 and Vi(t)= ∫qidt:
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B) Description of Linear Two-Phase Flow at constant Injection rate qi=qi(t)

From the moment of breakthrough the displacing phase (t ≥ ta) a two-phase flow
develop along the length of the whole linear core, for which in the case of (dPc/dx)=0
on the basis of the equation (7) beside qi=qi(t)=constant condition can be written, tak-
ing into consideration that Vi(t)=qit and ∆p=∆p(t), that is the pressure difference will
change in time:
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By rearranging the equation (9) the function Y(Sd2) can be obtained in this case too,
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By means of the connections (8) and (10) the function Y(Sd) can be determined in
the outlet cross-section for both the displacement processes of the ∆p(t)= constant de-
pression and the qi(t)=constant injection rate, that can be considered as the sum of mo-
bility for the displacing and displaced fluids. In order to determine the value of the
function it is required to know the time trend Vi=Vi(t) of the cumulative injected fluid
during displacement, to know the time trend of ∆p= ∆p(t) of time pressure appearing on
the rock sample as well as the knowledge of the geometrical dimensions and the abso-
lute permeability of the core.

C) The Fluidum Proportions of The Flow of Changing Condition in the Outlet

In the both cases of ∆p = constant and qI = constant for t ≥ ta the following a lin-
ear equation can be written:
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where
dfkf f1fa −== ,

and fkf, fdf - is the fraction of the displaced and displacing fluids at the break-
through,

( )dimaxd SS1b = ,
Sdmax - maximum saturation of displacing fluid reached during an infinite time dis-

placement,
Sdi - the displacing fluid saturation of the rock-core at the beginning of the dis-

placement.



According to the equation (11) the fluid rates in the outlet section after the break-
through are
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and thus also the rate of mobility of both fluids can be written by means of the
equations (1), (2), (12) and (13) for the outlet section:
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D) The Equations Of Calculation of the Relative Permeability

Previously by means of the connections conducted according to the Par. A, B, and
C, knowing the data of the displacing process the sum of mobility of both the displacing
and displaced fluids Y(Sd2) can be determined in the outlet section and the ratio of the
mobility of both the displacing and the displaced fluids Md2 as well as the values of the
relative permeability, too. Having these data the mobilities and the relative permeabil-
ities of the displacing and displaced phases can be determined too. In order to determine
the mobilities the next two equations can be used:
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From the equation (15) and (16) knowing the ?d and µk the relative permeabilities
can be calculated:
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E) The Saturation of outlet section

Using the linear equation (11) the saturation of the outlet section and the average
saturation of the rock-core can be determined for any injected cumulative volume. The
average saturation can be calculated by the next equation:
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while the saturation at the outlet can be determined by following equation
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F) The Approximation Functions of Pressure Difference and the Cumulative Injected
Fluid Volume and That of the Injecting Time

On the basis of experiences of displacement tests the time changes of pressure dif-
ference and that of the cumulative injected fluid volume can be described with the next
approximation functions. In the case of displacement qi=const. and t ≥ ta the timely al-
tering pressure difference ∆p(t) can be approximated by following equation
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while in the case of ∆p=const. the cumulative injected fluid volume can be ap-
proached by next equation
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Using these approximation functions the equations (8) and (10), the functions
Y(Sd2) can be written in the following form:

in the case of ∆p = const.
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and in the case of qi =const.
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The applicability of the method discussed previously has been introduced by using
our own displacement tests and by using the data of displacement tests published by the
literature.

DESCRIPTION OF THE EXPERIMENTS

Numerous displacement tests have been carried out by our laboratories in the pre-
vious years. During these tests the displacement procedures with changing flow condi-
tion (phase change) on different, mainly of sandstone rock samples, were examined.
The tests have been carried out on a laboratory temperature, the oil used is a mineral oil
diluted by kerosene without gas, while the water was brine having different salt content
in the imbibition direction because the tested stone-cores were always water-wet.



Using the displacement data the pa-
rameter a and b of the linear displacement
equation can be determined by a regression
calculation. The parameters a1 and b1 in
the case qI = const., and the parameters a2

and b2 for the case ∆p = const. can also be
calculated after the breakthrough of the
displacing phase. By means of the func-
tions Y(Sd), fd, and fk the kr-values can be
determined for a further non-dimensional
Vi/Vp displacing phase.

The relative permeability function re-
ceived on the basis of the processing of
measured data of the P-type rock-core can
be shown by the Figure 1. and 2.

The curves that can be seen on the
Figure 3. are given on the basis of evalua-
tion of data of the tests that had been car-
ried out in the drainage direction on the
rock-core TJ. On the basis of these curves
it can be seen that in the case of carefully
chosen displacing characters (phase
change) the phase of displacement after the
breakthrough can embrace a big range of
saturation.

The phase change was also performed
on drainage-direction on the rock core
D32/23. The obtained curves of the rela-
tive permeability are shown by the Figure
4, the characteristic of displacement has
also been performed appropriately, and by
means of a measurement it was therefore
possible to embrace a relatively wide range
of saturation.

The results of rock-core D32/30 have
been shown by the kr-curves of the Figure
5.

The sections represented by dashed
lines have been drawn through theoretical
considerations and not calculations.
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Fig. 1. Relative permeability curves
(P rock sample, water injection, imbibi-

tion, ∆p = const.)
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Fig. 2.  Relative permeability curves
(P rock sample, water injection, imbibition,

qi = const.)



RESULTS AND DISCUSSION

During evaluation of laboratory dis-
placement-tests of changing flow condi-
tions on rock samples it should be always
supposed that the rock-core is homogene-
ous and isotropic in flow direction because
otherwise the tendencies of the results
would not unequivocal or those could alter
during the procedure of the exchange. If
this happens then the evaluation of results
can fail or the tendency change should be
adapted, for example for the function of
relative permeability received in result,
which can cause problems of interpretation
too. In the case of evaluation method de-
scribed here it is practical to watch the
next.

It results from theoretical and physical
considerations that the next expressions
should be used for the relative permeabil-
ity functions controlling the exchange of
the non-miscible fluid-phases:

in the case of drainage exchange the relative permeability of the wetting phase will
reduce monotonously parallel with the reduction of the saturation of the wetting phase,
and that of the non-wetting fluid will grow monotonously

in the case of imbibition exchange the relative permeability of the wetting phase
will grow monotonously, and that of the non-wetting one however will reduce monoto-

nously.
For the change of the phases (for the

displacement process) either the constant
yield qI = const. or beside a constant de-
pression of ∆p = const. the quotient of the
displacing and the displaced fluids (Lever-
ett function) follows the next tendency:

in the drainage direction the fraction
of the wetting phase (fk) will reduce mo-
notonously from the moment of the
breakthrough, that of the non-wetting
phase will however grow monotonously,

during the imbibitions the fraction of
the non-wetting phase will monotonously
reduce from the breakthrough, but that of
the wetting (displacing) phase (fd) will
grow monotonously.

Concerning the exchange procedure of
the phases beside both the qI = const. and
∆p=const. the linear function

piki VVbaVV ⋅+=  is valid where the pa-
rameters a=fkf=1-fdf, b=1/(Sdmax-Sd0) always have a positive value. Considering the
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above-mentioned it can be stated unequivocally that the procedure of a phase change
beside

∆p = const. can only correspond with conditions discussed by us, if a relation b2 ≥
1 holds for the parameter b2, otherwise according to the equation (23) the function
Y(Sd) does not reduce monotonously parallel with the rise of the function (Vi/Vp) but it

will reduce.
In the case of -qI = const. the function
Y(Sd) will only be monotonously grow-
ing equation (24), if a b1 ≤ 0 relation
holds for parameter b1. This tendency was
demonstrated by P.M. Sigmund, and F.G.
McCaffery too. It is unequivocally proven
that the linear function described for the
phase change: the piki VVbaVV ⋅+= ,
always describes the procedure from the
moment of the break-through even in the
case, if during the exchange also the cap-
illary force gets role, however the equa-
tions having been given by the theoretical
part - using the equations

( ) 1b
pi1 Vtqap =∆  or 2b

2i taV =  will only
describe a relative permeability for fluids
included by the exchange, if the role of
the capillary force is actually minimal in

the procedure.

CONCLUSIONS

1. Regarding the change of altering flow of the non-miscible fluids, from the data
of linear equation and those of the procedure following it in the case ∆p = const. the
connection 2b

2i taV =  in the case of qI = const.  ( ) 1b
pi1 Vtqap =∆  obtained from the

processing of the change of altering flow of non-miscible fluids, occurred as described,
are appropriate to determine analytically the relative permeability curves relating the
fluids.

2. The interrelations described by the theoretical part are simple enough to perform
the calculation quickly and it is not necessary to use an auxiliary graphical procedure.

3. The function ( ) ( ) ( )krkdrdd kkSY µ+µ=  should be monotonously growing in both
flow cases (including the necessity of having a constant value too), therefore the condi-
tions b2 ≥ 1  and b1 ≤ 0 should be fulfilled in the equation (23) or (24) relating a given
test. If these conditions would not hold, so the capillary force also had played a decisive
role in the procedure of exchange.

SYMBOLS

a,a1,a2 - constant values
A - cross section of the rock-core, cm2
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Fig. 5. Relative permeability curves
(D32/30 rock sample, Water injection, im-
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b,b1,b2 - constant values
f - fraction (quotient), fraction
k - permeability, µm2

kr - relative permeability, fraction
L - length of the rock-core, cm
M - rate of mobility, fraction
p - pressure, bar
∆p- pressure difference, bar
q - volume flow rate, cm3/s
S - saturation, fraction
t - time, sec
V - cumulative volume, cm3

Y(Sd) - auxiliary function, 1/mPa s
µ - dynamic viscosity, mPa s

Indices

a - breakthrough
d - displacing fluid
f - front
i - injected, initial
k - displaced fluid
p - pores
max - maximal
 - average
2 - outlet section


